Cooper AJ, Harris VR. Modern management of acne. Med J Aust. 2017;206:41–5.
Stamu-O’Brien C, Jafferany M, Carniciu S, Abdelmaksoud A. Psychodermatology of acne: psychological aspects and effects of acne vulgaris. J Cosmet Dermatol. 2021;20:1080–3.
Tuchayi SM, Makrantonaki E, Ganceviciene R, Dessinioti C, Feldman SR, Zouboulis CC. Acne vulgaris. Nature Reviews Disease Primers 2015, 1.
Dessinioti C, Katsambas AD. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol. 2010;28:2–7.
Jeremy AHT, Holland DB, Roberts SG, Thomson KF, Cunliffe WJ. Inflammatory events are involved in acne lesion initiation. J Invest Dermatology. 2003;121:20–7.
DZ, i.;J. L, LF. S. Management of acne vulgaris: a review. JAMA. 2016;326:2055–67.
Kim HJ, Kim YH. Exploring acne treatments: from pathophysiological mechanisms to emerging therapies. Int J Mol Sci 2024, 25.
Reynolds RV, Yeung H, Cheng CE, Cook-Bolden F, Desai SR, Druby KM, Freeman EE, Keri JE, Stein Gold LF, Tan JKL, Tollefson MM, Weiss JS, Wu PA, Zaenglein AL, Han JM, Barbieri JS. Guidelines of care for the management of acne vulgaris. Journal of the American Academy of Dermatology 2024, 90, 1006.e1001-1006.e1030.
Niedźwiedzka A, Micallef MP, Biazzo M, Podrini C. The role of the skin Microbiome in acne: challenges and future therapeutic opportunities. Int J Mol Sci 2024, 25.
Münch S, Wohlrab J, Neubert RHH. Dermal and transdermal delivery of pharmaceutically relevant macromolecules. Eur J Pharm Biopharm. 2017;119:235–42.
Jamaledin R, Yiu CKY, Zare EN, Niu LN, Vecchione R, Chen G, Gu Z, Tay FR, Makvandi P. Advances in antimicrobial microneedle patches for combating infections. Adv Mater 2020, 32.
Xiang Y, Lu J, Mao C, Zhu Y, Wang C, Wu J, Liu X, Wu S, Kwan KYH, Cheung KMC, Yeung KW. K. Ultrasound-triggered interfacial engineering-based microneedle for bacterial infection acne treatment. Sci Adv. 2023;9:eadf0854.
Article CAS PubMed PubMed Central Google Scholar
Ni Z-J, Wang X, Shen Y, Thakur K, Han J, Zhang J-G, Wei Z-J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci Technol. 2021;110:78–89.
Winkelman WJ. Aromatherapy, botanicals, and essential oils in acne. Clin Dermatol. 2018;36:299–305.
Bisht A, Hemrajani C, Rathore C, Dhiman T, Rolta R, Upadhyay N, Nidhi P, Gupta G, Dua K, Chellappan DK, Dev K, Sourirajan A, Chakraborty A, Aljabali AAA, Bakshi HA, Negi P, Tambuwala MM. Hydrogel composite containing Azelaic acid and tea tree essential oil as a therapeutic strategy for Propionibacterium and testosterone-induced acne. Drug Delivery Translational Res. 2021;12:2501–17.
Fan Y, Li Q. An efficient extraction method for essential oil from Angelica sinensis radix by natural deep eutectic solvents-assisted microwave hydrodistillation. Sustainable Chem Pharm 2022, 29.
Askari N, Ghazanfari T, Yaraee R, Vaez Mahdavi MR, Soroush MR, Mohammad Hassan Z, Khodashenas Z, Shams J, Faghihzadeh S. Association between acne and serum pro-inflammatory cytokines (IL-1α, IL-1β, IL-1Ra, IL-6, IL-8, IL-12 and RANTES) in mustard gas-exposed patients: Sardasht-Iran cohort study. Arch Iran Med. 2017;20:86–91.
Yao W, Zhang L, Hua Y, Ji P, Li P, Li J, Zhong L, Zhao H, Wei Y. The investigation of anti-inflammatory activity of volatile oil of Angelica sinensis by plasma metabolomics approach. Int Immunopharmacol. 2015;29:269–77.
Article CAS PubMed Google Scholar
Hua Y-l, Ji P, Xue Z-y, Wei Y-m. Construction and analysis of correlation networks based on gas chromatography-mass spectrometry metabonomics data for lipopolysaccharide-induced inflammation and intervention with volatile oil from Angelica sinensis in rats. Mol Biosyst. 2015;11:3174–87.
Article CAS PubMed Google Scholar
Yuan A, He Y, Ma Y, Chen S, He Y, Liu J, Xiong H. Antibacterial activity of angelica essential oil, its mechanism against Pseudomonas fluorescens, and its application in the preservation of chilled fresh beef. Food Bioscience 2024, 60.
de Santana NA, da Silva RCS, Fourmentin S;dos, Anjos KFL, Ootan MA, da Silva AG, Pereira Araújo BG;dos, Santos Correia MT;da, Silva MV, Machado G. Synthesis, characterization and cytotoxicity of the Eugenia brejoensis essential oil inclusion complex with β-cyclodextrin. Journal of Drug Delivery Science and Technology 2020, 60.
Marques HM. C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J. 2010;25:313–26.
Adhikari S, Daftardar S, Fratev F, Rivera M, Sirimulla S, Alexander K, Boddu SHS. Elucidation of the orientation of selected drugs with 2-hydroxylpropyl-β-cyclodextrin using 2D-NMR spectroscopy and molecular modeling. Int J Pharm. 2018;545:357–65.
Article CAS PubMed Google Scholar
Gould S, Scott RC. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food Chem Toxicol. 2005;43:1451–9.
Article CAS PubMed Google Scholar
Pham QD, Björklund S, Engblom J, Topgaard D, Sparr E. Chemical penetration enhancers in stratum corneum — Relation between molecular effects and barrier function. J Controlled Release. 2016;232:175–87.
Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J Controlled Release. 2017;251:11–23.
Younas A, Asad M, Wan X, Zhang Y, Ma X, Wang L, Gu H, Shang H, Zhang N. Oregano essential oil-infused mucin microneedle patch for the treatment of hypertrophic scar. International Journal of Pharmaceutics 2024, 665.
Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, Donnelly R. F. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472:65–73.
Article PubMed PubMed Central Google Scholar
Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Chem. 2019;66:4–13.
Li ZJ, Choi DK, Sohn KC, Seo MS, Lee HE, Lee Y, Seo YJ, Lee YH, Shi G, Zouboulis CC, Kim CD, Lee JH, Im M. Propionibacterium acnes activates the NLRP3 inflammasome in human sebocytes. J Invest Dermatology. 2014;134:2747–56.
Xiong H, Li X, Mou X, Huang C, Yi S, Xiong X, Zhou Y, Chen Y. Syringic acid suppresses Cutibacterium acnes-induced inflammation in human keratinocytes via regulating the NLRP3/caspase-1/IL-1β signaling axis by activating PPARγ/Nrf2-antioxidant pathway. Int Immunopharmacol. 2024;139:112708.
Article CAS PubMed Google Scholar
Xi X, Huang J, Zhang S, Lu Q, Fang Z, Li C, Zhang Q, Liu Y, Chen H, Liu A, Liu S, Wang C, Li S, Hu B. Preparation and characterization of inclusion complex of myristica Fragrans houtt. (nutmeg) essential oil with 2-hydroxypropyl-β-cyclodextrin. Food Chem. 2023;423:136316.
Article CAS PubMed Google Scholar
Qiang Y, Wei H, Huang B, Chi H, Fu J. Inclusion complex of turmeric essential oil with hydroxypropyl-β-cyclodextrin: preparation, characterization and release kinetics. Curr Res Food Sci. 2024;8:100668.
Article CAS PubMed Google Scholar
Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilček J, Zinkernagel RM, Aguet M. Immune response in mice that lack the Interferon-γ receptor. Science. 1993;259:1742–5.
Article CAS PubMed Google Scholar
Rahemtulla A, Fung-Leung WP, Schilham MW, Sambhara SR, Narendran A, Arabian A, Wakeham A, Paige CJ, Zinkernagel RM, Miller RG, Mak TW. Normal development and function of CD8 + cells but markedly decreased helper cell activity in mice lacking CD4. Nature. 1991;353:180–4.
Article CAS PubMed Google Scholar
Perwitasari O, Cho H, Diamond MS, Gale M. Jr. Inhibitor of kB kinase ε(IKKε), STAT1, and IFIT2 proteins define novel innate immune effector pathway against West nile virus infection. J Biol Chem. 2011;286:44412–23.
Article CAS PubMed PubMed Central Google Scholar
Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356:513–9.
Article CAS PubMed PubMed Central Google Scholar
Wuest TR, Carr DJJ. Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the antiviral response to herpes simplex virus 1 Infection1. J Immunol. 2008;181:7985–93.
Article CAS PubMed Google Scholar
Li X, Yue Z, Wang D, Zhou L. PTPRC functions as a prognosis biomarker in the tumor microenvironment of cutaneous melanoma. Sci Rep. 2023;13:20617.
Article CAS PubMed PubMed Central Google Scholar
Singh B, Anbalagan S, Selvaraj P. Regulatory role of CCL5 (rs2280789) and CXCL10 (rs56061981) gene polymorphisms on intracellular CCL5 and CXCL10 expression in pulmonary tuberculosis. Hum Immunol. 2017;78:430–4.
Comments (0)