Voelker R. What is ulcerative colitis. JAMA. 2024;331(8):716.
Krugliak Cleveland N, Torres J, Rubin DT. What does disease progression look like in ulcerative colitis, and how might it be prevented? Gastroenterology. 2022;162(5):1396–408.
Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis. Lancet. 2023;402(10401):571–84.
Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, et al. Design of therapeutic biomaterials to control inflammation. Nat Rev Mater. 2022;7(7):557–74.
Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, et al. Ulcerative colitis. Nat Rev Dis Primers. 2020;6(1):74.
Niu W, Chen X, Xu R, Dong H, Yang F, Wang Y, et al. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis: a review. Carbohydr Polym. 2021;254:117189.
Article PubMed CAS Google Scholar
Kucharzik T, Koletzko S, Kannengiesser K, Dignass A. Ulcerative Colitis-Diagnostic and therapeutic algorithms. Dtsch Arztebl Int. 2020;117:564–74.
PubMed PubMed Central Google Scholar
Hirten RP, Sands BE. New therapeutics for ulcerative colitis. Annu Rev Med. 2021;72:199–213.
Article PubMed CAS Google Scholar
Wang W, Li X, Shi F, Zhang Z, Lv H. Study on the Preparation of EGCG-γ-Cyclodextrin inclusion complex and its drug-excipient combined therapeutic effects on the treatment of DSS-induced acute ulcerative colitis in mice. Int J Pharm. 2023;630:122419.
Article PubMed CAS Google Scholar
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FKH, Buanz A, et al. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev. 2022;181:114076.
McCoubrey LE, Favaron A, Awad A, Orlu M, Gaisford S, Basit AW. Colonic drug delivery: formulating the next generation of colon-targeted therapeutics. J Control Release. 2023;353:1107–26.
Tubic-Grozdanis M, Hilfinger JM, Amidon GL, Kim JS, Kijek P, Staubach P, et al. Pharmacokinetics of the CYP 3A substrate simvastatin following administration of delayed versus immediate release oral dosage forms. Pharm Res. 2008;25(7):1591–600.
Article PubMed CAS Google Scholar
Zhang S, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today. 2017;16:82–96.
Zhao J, Gao W, Cai X, Xu J, Zou D, Li Z, et al. Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics. 2019;9(10):2843–55.
Zhang X, Yuan Z, Wu J, He Y, Lu G, Zhang D, et al. An orally-administered nanotherapeutics with carbon monoxide supplying for inflammatory bowel disease therapy by scavenging oxidative stress and restoring gut immune homeostasis. ACS Nano. 2023;17(21):21116–33.
Cai WQ, Liang W, Li D, Dai W, Li Z, Wei X, et al. Reactive oxygen species-responsive polymer drug delivery system targeted oxidative stressed colon cells to ameliorate colitis. ACS Nano. 2025;19(18):17287–308.
Zhao J, Gao W, Cai X, Xu J, Zou D, Li Z, et al. Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics. 2019;9(10):2843–55.
Article PubMed PubMed Central CAS Google Scholar
Zhang S, Kakkar A, Xue K, Korzenik J, Langer R, Traverso G. P-254 drug delivery targeting inflammation in ulcerative colitis. Inflamm Bowel Dis. 2017;23:S83.
Zhao M, Xie X, Xu B, Chen Y, Cai Y, Chen K, et al. Paeonol alleviates ulcerative colitis in mice by increasing short-chain fatty acids derived from Clostridium butyricum. Phytomedicine. 2023;120:155056.
Zong SY, Pu YQ, Xu BL, Zhang T, Wang B. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis. Int Immunopharmacol. 2017;42:32–8.
Jin X, Wang J, Xia ZM, Shang CH, Chao QL, Liu YR, et al. Anti-inflammatory and anti-oxidative activities of paeonol and its metabolites through blocking MAPK/ERK/p38 signaling pathway. Inflammation. 2016;39(1):434–46.
Wang Q, Xu X, Kang Z, Zhang Z, Li Y. Paeonol prevents IL-1β-induced inflammatory response and degradation of type II collagen in human primary chondrocytes. Artif Cells Nanomed Biotechnol. 2019;47(1):2139–45.
Li J, Li Y, Pan S, Zhang L, He L, Niu Y. Paeonol attenuates ligation-induced periodontitis in rats by inhibiting osteoclastogenesis via regulating Nrf2/NF-κB/NFATc1 signaling pathway. Biochimie. 2019;156:129–37.
Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–42.
Zong SY, Pu YQ, Xu BL, Zhang T, Wang B. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis. Int Immunopharmacol. 2017;42:32–8.
Adki KM, Kulkarni YA. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol. Life Sci. 2020;250:117544.
Hu X, Ding L, Cao S, Cheng L, Wang K, Guang C, et al. Pharmacokinetics, tissue distribution and excretion of paeonol and its major metabolites in rats provide a further insight into paeonol effectiveness. Front Pharmacol. 2020;11:190.
Lu L, Qin Y, Chen C, Guo X. Beneficial effects exerted by paeonol in the management of atherosclerosis. Oxid Med Cell Longev. 2018;2018:1098617.
Huang S, Zhai B, Fan Y, Sun J, Cheng J, Zou J, et al. Development of paeonol liposomes: design, optimization, in vitro and in vivo evaluation. Int J Nanomedicine. 2022;17:5027–46.
Article PubMed CAS Google Scholar
Wang F, Shan Q, Chang X, Li Z, Gui S. Paeonol-loaded PLGA nanoparticles as an oral drug delivery system: design, optimization and evaluation. Int J Pharm. 2021;602:120617.
Article PubMed CAS Google Scholar
Li H, Zhu J, Wang C, Qin W, Hu X, Tong J, et al. Paeonol loaded cyclodextrin metal-organic framework particles for treatment of acute lung injury via inhalation. Int J Pharm. 2020;587:119649.
Article PubMed CAS Google Scholar
Brito-de la Fuente E, Muñiz-Becerá S, Ascanio G. Lipid emulsions in clinical nutrition: enteral and parenteral nutrition. Adv Food Nutr Res. 2023;105:301–42.
Han L, Peng X, Zhou S, Huang Y, Zhang S, Li Y. Development of whey protein isolate-phytosterols complexes stabilized oil-in-water emulsion for β-carotene protection and delivery. Food Res Int. 2022;160:111747.
Article PubMed CAS Google Scholar
Fuhrmann PL, Sala G, Stieger M, Scholten E. Clustering of oil droplets in o/w emulsions: controlling cluster size and interaction strength. Food Res Int. 2019;122:537–47.
Dos Santos AM, Carvalho SG, Meneguin AB, Sábio RM, Gremião MPD, Chorilli M. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: challenges, advances and future perspectives. J Control Release. 2021;334:353–66.
Article PubMed CAS Google Scholar
Shah B. Microemulsion as a promising carrier for nose to brain delivery: journey since last decade. J Pharm Investig. 2021;51:611–34.
Bahadur S, Pardhi DM, Rautio J, Rosenholm JM, Pathak K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for CNS disorders. Pharmaceutics. 2020;12(12):1230.
Article PubMed PubMed Central CAS Google Scholar
Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology. 2021;19(1):32.
Wang C, Tian W, Song Z, Wang Q, Cao Y, Xiao J. Effects of solid lipid ratio in curcumin loaded emulsions on its gastrointestinal fate: colloidal stability and mucus absorption efficiency. Food Res Int. 2024;175:113631.
Article PubMed CAS Google Scholar
Zhang T, Zhang X, Jin M, Zhang Y, Jiang L, Sui X. Parameter control, characterization and stability of soy protein emulsion prepared by microfluidic technology. Food Chem. 2023;427:136689.
Article PubMed CAS Google Scholar
Morais AR, Alencar Édo N, Xavier Júnior FH, de Oliveira CM, Marcelino HR, Barratt G, et al. Freeze-drying of emulsified systems: a review. Int J Pharm. 2016;503(1-2):102–14.
Yang Y, Zheng X, Wang Y, Tan X, Zou H, Feng S, et al. Human fecal microbiota transplantation reduces the susceptibility to dextran sulfate sodium-induced germ-free mouse colitis. Front Immunol. 2022;13:836542.
Article PubMed PubMed Central CAS Google Scholar
Wang X, Shen C, Wang X, Tang J, Wu Z, Huang Y, et al. Schisandrin protects against ulcerative colitis by inhibiting the SGK1/NLRP3 signaling pathway and reshaping gut microbiota in mice. Chin Med. 2023;18(1):112.
Huang L, Zheng J, Sun G, Yang H, Sun X, Yao X, et al. 5-Aminosalicylic acid ameliorates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota and bile acid metabolism. Cell Mol Life Sci. 2022;79(8):460.
Dieleman LA, Palmen MJ, Akol H, Bloemena E, Peña AS, Meuwissen SG, et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998;114(3):385–91.
Zhao S, Li Y, Liu Q, Li S, Cheng Y, Cheng C, et al. An orally administered CeO2@Montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv Funct Mater. 2020;30(45):2004692.
Zhang S, Ermann J, Succi MD, Zhou A, Hamilton MJ, Cao B, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med. 2015;7(300):300ra128.
Article PubMed PubMed Central Google Scholar
Koziolek M, Grimm M, Becker D, Iordanov V, Zou H, Shimizu J, et al. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap(®) system. J Pharm Sci. 2015;104(9):2855–63.
Wu MM, Wang QM, Huang BY, Mai CT, Wang CL, Wang TT, et al. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharmacol Res. 2021;172:105796.
Tian W, Wang H, Zhu Y, Wang Q, Song M, Cao Y, et al. Intervention effects of delivery vehicles on the therapeutic efficacy of 6-gingerol on colitis. J Control Release. 2022;349:51–66.
Peng P, Feng T, Yang X, Ding R, Wang J, Chen P, et al. Bioorthogonal conjugation and responsive nanocoating of probiotics for inflammatory bowel disease. J Control Release. 2024;374:538–49.
Wang H, Tian W, Li Y, Yuan Y, Lv M, Cao Y, et al. Intervention effects of multilayer core-shell particles on colitis amelioration mechanisms of capsaicin. J Control Release. 2022;351:324–40.
Otani T, Furuse M. Tight junction structure and function revisited. Trends Cell Biol. 2020 Oct;30(10):805–17.
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol. 2023;20(7):417–32.
Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017;4:14.
Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol Metab. 2022;33(4):247–65.
Li J, Sun M, Liu L, Yang W, Sun A, Yu J, et al. Nanoprobiotics for remolding the pro-inflammatory microenvironment and microbiome in the treatment of colitis. Nano Lett. 2023;23(18):8593–601.
Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut Microbiome. Gut. 2020;69(8):1510–9.
Article PubMed CAS Google Scholar
Cui L, Guan X, Ding W, Luo Y, Wang W, Bu W, et al. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. Int J Biol Macromol. 2021;166:1035–45.
Article PubMed CAS Google Scholar
Mohebali N, Weigel M, Hain T, Sütel M, Bull J, Kreikemeyer B, et al. Faecalibacterium prausnitzii, Bacteroides faecis and Roseburia intestinalis attenuate clinical symptoms of experimental colitis by regulating Treg/Th17 cell balance and intestinal barrier integrity. Biomed Pharmacother. 2023;167:115568.
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, et al. Bacillales: from taxonomy to biotechnological and industrial perspectives. Microorganisms. 2022;10(12):2355.
Article PubMed PubMed Central CAS Google Scholar
Dai N, Yang X, Pan P, Zhang G, Sheng K, Wang J, et al. Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome. Microbiol Res. 2024;287:127856.
Comments (0)