Beck RW, Connor CG, Mullen DM, Wesley DM, Bergenstal RM. The fallacy of average: how using HbA1c alone to assess glycemic control can be misleading. Diabetes Care. 2017;40:994–9.
Article CAS PubMed PubMed Central Google Scholar
Nielsen LR, Ekbom P, Damm P, Glümer C, Frandsen MM, Jensen DM, et al. HbA1c levels are significantly lower in early and late pregnancy. Diabetes Care. 2004;27:1200–1.
Article CAS PubMed Google Scholar
Ford ES, Cowie CC, Li C, Handelsman Y, Bloomgarden ZT. Iron-deficiency anemia, non-iron-deficiency anemia and HbA1c among adults in the US. J Diabetes. 2011;3:67–73.
Article CAS PubMed Google Scholar
Segar MW, Patel KV, Vaduganathan M, Caughey MC, Butler J, Fonarow GC, et al. Association of Long-term change and variability in glycemia with risk of incident heart failure among patients with type 2 diabetes: a secondary analysis of the ACCORD trial. Diabetes Care. 2020;43:1920–8.
Article PubMed PubMed Central Google Scholar
Agiostratidou G, Anhalt H, Ball D, Blonde L, Gourgari E, Harriman KN, et al. Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: a consensus report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange. Diabetes Care. 2017;40:1622–30.
Article PubMed PubMed Central Google Scholar
Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017;40:1631–40.
Article PubMed PubMed Central Google Scholar
Hirsch IB. Introduction history of glucose monitoring. In: Role of continuous glucose monitoring in diabetes treatment arlington (VA): American Diabetes Association; [Internet]. 2018 [cited 2022 Nov 16];1–1. Available from: https://diabetesjournals.org/compendia/article/2018/1/1/144616/Introduction-History-of-Glucose-Monitoring
Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the International Consensus on Time in Range. Diabetes Care. 2019;42:1593–603.
Article PubMed PubMed Central Google Scholar
Fox BQ, Benjamin PF, Aqeel A, Fitts E, Flynn S, Levine B, et al. Continuous glucose monitoring use in clinical trials for on-market diabetes drugs. Clin Diabetes. 2021;39:160–6.
Article PubMed PubMed Central Google Scholar
Battelino T, Alexander CM, Amiel SA, Arreaza-Rubin G, Beck RW, Bergenstal RM, et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 2023;11:42–57.
Article CAS PubMed Google Scholar
Maiorino MI, Signoriello S, Maio A, Chiodini P, Bellastella G, Scappaticcio L, et al. Effects of continuous glucose monitoring on metrics of glycemic control in diabetes: a systematic review with meta-analysis of randomized controlled trials. Diabetes Care. 2020;43:1146–56.
Article CAS PubMed Google Scholar
Gómez-Peralta F, Dunn T, Landuyt K, Xu Y, Merino-Torres JF. Flash glucose monitoring reduces glycemic variability and hypoglycemia: real-world data from Spain. BMJ Open Diabetes Res Care. 2020;8: e001052.
Article PubMed PubMed Central Google Scholar
Gobierno de España. El Sistema Nacional de Salud (SNS) financia los sistemas de monitorización de glucosa mediante sensores (tipo flash) a los menores de 18 años con diabetes tipo 1 (Accessed 12 January 2022) [Internet]. 2018. Available from: https://www.lamoncloa.gob.es/serviciosdeprensa/notasprensa/sanidad/Paginas/2018/190918diabetes.aspx
Gobierno de España. El SNS amplía la financiación de los sistemas de monitorización continua de glucosa en tiempo real. Government of Spain. https://www.lamoncloa.gob.es/serviciosdeprensa/notasprensa/sanidad14/Paginas/2021/270821-glucosa.aspx (Accessed on 12 January 2022). 2021
Holt RIG, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, et al. The management of type 1 diabetes in adults. a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2021;64:2609–52.
Article PubMed PubMed Central Google Scholar
Dovc K, Battelino T. Time in range centered diabetes care. Clin Pediatr Endocrinol. 2021;30:1–10.
Article PubMed PubMed Central Google Scholar
Beck RW, Bergenstal RM, Cheng P, Kollman C, Carlson AL, Johnson ML, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c. J Diabetes Sci Technol. 2019;13:614–26.
Article PubMed PubMed Central Google Scholar
Fabris C, Heinemann L, Beck R, Cobelli C, Kovatchev B. Estimation of hemoglobin A1c from continuous glucose monitoring data in individuals with type 1 diabetes: is time in range all we need? Diabetes Technol Ther. 2020;22:501–8.
Article CAS PubMed PubMed Central Google Scholar
Valenzano M, Cibrario Bertolotti I, Valenzano A, Grassi G. Time in range-A1c hemoglobin relationship in continuous glucose monitoring of type 1 diabetes: a real-world study. BMJ Open Diabetes Res Care. 2021;9: e001045.
Article PubMed PubMed Central Google Scholar
Díaz-Soto G, Beato P, Antuña R, Giménez M, Bahillo P, Vázquez F, et al. Documento de consenso SED sobre monitorización a demanda (FLASH) de glucosa. 2018. Available at https://www.sediabetes.org/wp-content/uploads/Documento-de-Consenso-sobre-Monitorizacion-a-Demanda-flash-de-glucosa.pdf.
Bellido V, Aguilera E, Cardona-Hernandez R, Diaz-Soto G, Pérez G, de Villar N, Picón-César MJ, et al. Expert recommendations for using time-in-range and other continuous glucose monitoring metrics to achieve patient-centered glycemic control in people with diabetes. J Diabetes Sci Technol. 2021. https://doi.org/10.1177/19322968221088601.
Bergenstal RM, Beck RW, Close KL, Grunberger G, Sacks DB, Kowalski A, et al. Glucose management indicator (GMI): a new term for estimating A1C from continuous glucose monitoring. Diabetes Care. 2018;41:2275–80.
Article PubMed PubMed Central Google Scholar
Gómez-Peralta F, Choudhary P, Cosson E, Irace C, Rami-Merhar B, Seibold A. Understanding the clinical implications of differences between glucose management indicator and glycated haemoglobin. Diabetes Obes Metab. 2022;24:599–608.
Piona C, Marigliano M, Mozzillo E, Di Candia F, Zanfardino A, Iafusco D, et al. Evaluation of HbA1c and glucose management indicator discordance in a population of children and adolescents with type 1 diabetes. Pediatr Diabetes. 2022;23:84–9.
Article CAS PubMed Google Scholar
Oriot P, Viry C, Vandelaer A, Grigioni S, Roy M, Philips JC, et al. discordance between glycated hemoglobin A1c and the glucose management indicator in people with diabetes and chronic kidney disease. J Diabetes Sci Technol. 2022. https://doi.org/10.1177/19322968221092050.
Article PubMed PubMed Central Google Scholar
Beck RW, Bergenstal RM, Riddlesworth TD, Kollman C, Li Z, Brown AS, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019;42:400–5.
Article CAS PubMed Google Scholar
Ranjan AG, Rosenlund SV, Hansen TW, Rossing P, Andersen S, Nørgaard K. Improved time in range over 1 year is associated with reduced albuminuria in individuals with sensor-augmented insulin pump-treated type 1 diabetes. Diabetes Care. 2020;43:2882–5.
Article CAS PubMed Google Scholar
Guo Q, Zang P, Xu S, Song W, Zhang Z, Liu C, et al. Time in range, as a novel metric of glycemic control, is reversely associated with presence of diabetic cardiovascular autonomic neuropathy independent of HbA1c in Chinese Type 2 diabetes. J Diabetes Res. 2020;2020:5817074.
Article PubMed PubMed Central Google Scholar
Yoo JH, Choi MS, Ahn J, Park SW, Kim Y, Hur KY, et al. Association between continuous glucose monitoring-derived time in range, other core metrics, and albuminuria in Type 2 diabetes. Diabetes Technol Ther. 2020;22:768–76.
Article CAS PubMed Google Scholar
Lu J, Wang C, Shen Y, Chen L, Zhang L, Cai J, et al. Time in Range in relation to all-cause and cardiovascular mortality in patients with type 2 diabetes: a prospective cohort study. Diabetes Care. 2021;44:549–55.
Article CAS PubMed Google Scholar
Kuroda N, Kusunoki Y, Osugi K, Ohigashi M, Azuma D, Ikeda H, et al. Relationships between time in range, glycemic variability including hypoglycemia and types of diabetes therapy in Japanese patients with type 2 diabetes mellitus: Hyogo Diabetes Hypoglycemia Cognition Complications study. J Diabetes Investig. 2021;12:244–53.
Comments (0)