Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS, American Heart Association Council on E, Prevention Statistics C, Stroke Statistics S (2023) Heart disease and stroke statistics-2023 update: a report from the American Heart Association. Circulation 147(8):e93–e621. https://doi.org/10.1161/CIR.0000000000001123
Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0
Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, Kamel H, Kernan WN, Kittner SJ, Leira EC, Lennon O, Meschia JF, Nguyen TN, Pollak PM, Santangeli P, Sharrief AZ, Smith SC Jr, Turan TN, Williams LS (2021) 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke 52(7):e364–e467. https://doi.org/10.1161/STR.0000000000000375
Wieronska JM, Cieslik P, Kalinowski L (2021) Nitric oxide-dependent pathways as critical factors in the consequences and recovery after brain ischemic hypoxia. Biomolecules 11 (8). https://doi.org/10.3390/biom11081097
Schaeffer S, Iadecola C (2021) Revisiting the neurovascular unit. Nat Neurosci 24(9):1198–1209. https://doi.org/10.1038/s41593-021-00904-7
Article CAS PubMed PubMed Central Google Scholar
Wang L, Xiong X, Zhang L, Shen J (2021) Neurovascular unit: a critical role in ischemic stroke. CNS Neurosci Ther 27(1):7–16. https://doi.org/10.1111/cns.13561
Article CAS PubMed PubMed Central Google Scholar
Ozaki T, Nakamura H, Kishima H (2019) Therapeutic strategy against ischemic stroke with the concept of neurovascular unit. Neurochem Int 126:246–251. https://doi.org/10.1016/j.neuint.2019.03.022
Article CAS PubMed Google Scholar
Zhang XQ, Wang XY, Dong BC, Li MX, Wang Y, Xiao T, Zhao SS (2023) C-X-C chemokine receptor type 7 antibody enhances neural plasticity after ischemic stroke. Neural Regen Res 18(9):1976–1982. https://doi.org/10.4103/1673-5374.363835
Article CAS PubMed PubMed Central Google Scholar
Li Y, Xue W, Li S, Cui L, Gao Y, Li L, Chen R, Zhang X, Xu R, Jiang W, Zhang X, Wang L (2024) Salidroside promotes angiogenesis after cerebral ischemia in mice through Shh signaling pathway. Biomed Pharmacother 174:116625. https://doi.org/10.1016/j.biopha.2024.116625
Article CAS PubMed Google Scholar
Liu S, Liu H, Yang L, Wang K, Chen N, Zhang T, Luo J (2022) A review of rehabilitation benefits of exercise training combined with nutrition supplement for improving protein synthesis and skeletal muscle strength in patients with cerebral stroke. Nutrients 14 (23). https://doi.org/10.3390/nu14234995
Hotting K, Roder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 37 (9 Pt B):2243–2257. https://doi.org/10.1016/j.neubiorev.2013.04.005
Bloor CM (2005) Angiogenesis during exercise and training. Angiogenesis 8(3):263–271. https://doi.org/10.1007/s10456-005-9013-x
Nie J, Yang X (2017) Modulation of synaptic plasticity by exercise training as a basis for ischemic stroke rehabilitation. Cell Mol Neurobiol 37(1):5–16. https://doi.org/10.1007/s10571-016-0348-1
Article CAS PubMed Google Scholar
Geng H, Li M, Tang J, Lv Q, Li R, Wang L (2022) Early rehabilitation exercise after stroke improves neurological recovery through enhancing angiogenesis in patients and cerebral ischemia rat model. Int J Mol Sci 23 (18). https://doi.org/10.3390/ijms231810508
Wu B, Ding J, Chen A, Song Y, Xu C, Tian F, Zhao J (2022) Aerobic exercise improves adipogenesis in diet-induced obese mice via the lncSRA/p38/JNK/PPARgamma pathway. Nutr Res 105:20–32. https://doi.org/10.1016/j.nutres.2022.04.004
Article CAS PubMed Google Scholar
Zhao Y, Kuca K, Wu W, Wang X, Nepovimova E, Musilek K, Wu Q (2022) Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement 18(1):152–158. https://doi.org/10.1002/alz.12370x
Article CAS PubMed Google Scholar
Yan H, He L, Lv D, Yang J, Yuan Z (2024) The role of the dysregulated JNK signaling pathway in the pathogenesis of human diseases and its potential therapeutic strategies: a comprehensive review. Biomolecules 14 (2). https://doi.org/10.3390/biom14020243
Shan RR, Yu JT, Zhang SF, Xie MM, Hou R, Xie CY, Dong ZH, Yang Q, Hu XW, Dong YH, Zhang Y, Luo XF, Cui ZY, Liu XY, Xie YC, Wen JG, Liu MM, Jin J, Chen Q, Meng XM (2024) Madecassoside alleviates acute kidney injury by regulating JNK-mediated oxidative stress and programmed cell death. Phytomedicine 123:155252. https://doi.org/10.1016/j.phymed.2023.155252
Article CAS PubMed Google Scholar
Zhang Y, Wu Q, Zhang L, Wang Q, Yang Z, Liu J, Feng L (2019) Caffeic acid reduces A53T alpha-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res 150:104538. https://doi.org/10.1016/j.phrs.2019.104538
Article CAS PubMed Google Scholar
Zheng M, Chen R, Chen H, Zhang Y, Chen J, Lin P, Lan Q, Yuan Q, Lai Y, Jiang X, Pan X, Liu N (2018) Netrin-1 promotes synaptic formation and axonal regeneration via JNK1/c-Jun pathway after the middle cerebral artery occlusion. Front Cell Neurosci 12:13. https://doi.org/10.3389/fncel.2018.00013
Article CAS PubMed PubMed Central Google Scholar
Wang M, Zhang C, Zheng Q, Ma Z, Qi M, Di G, Ling S, Xu H, Qi B, Yao C, Xia H, Jiang X (2022) RhoJ facilitates angiogenesis in glioblastoma via JNK/VEGFR2 mediated activation of PAK and ERK signaling pathways. Int J Biol Sci 18(3):942–955. https://doi.org/10.7150/ijbs.65653
Article CAS PubMed PubMed Central Google Scholar
Chen M, Liu J, Wu W, Guo T, Yuan J, Wu Z, Zheng Z, Zhao Z, Lin Q, Liu N, Chen H (2024) SIRT1 restores mitochondrial structure and function in rats by activating SIRT3 after cerebral ischemia/reperfusion injury. Cell Biol Toxicol 40(1):31. https://doi.org/10.1007/s10565-024-09869-2
Article CAS PubMed PubMed Central Google Scholar
Zhao J, Wang L, Dong X, Hu X, Zhou L, Liu Q, Song B, Wu Q, Li L (2016) The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis. Sci Rep 6:19670. https://doi.org/10.1038/srep19670
Article CAS PubMed PubMed Central Google Scholar
Pan G, Zhang H, Zhu A, Lin Y, Zhang L, Ye B, Cheng J, Shen W, Jin L, Liu C, Xie Q, Chen X (2021) Treadmill exercise attenuates cerebral ischaemic injury in rats by protecting mitochondrial function via enhancement of caveolin-1. Life Sci 264:118634. https://doi.org/10.1016/j.lfs.2020.118634
Article CAS PubMed Google Scholar
Guo T, Chen M, Liu J, Wei Z, Yuan J, Wu W, Wu Z, Lai Y, Zhao Z, Chen H, Liu N (2023) Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia. J Transl Med 21(1):297. https://doi.org/10.1186/s12967-023-04125-3
Article CAS PubMed PubMed Central Google Scholar
Chen H, Liu J, Chen M, Wei Z, Yuan J, Wu W, Wu Z, Zheng Z, Zhao Z, Lin Q, Liu N (2024) SIRT3 facilitates mitochondrial structural repair and functional recovery in rats after ischemic stroke by promoting OPA1 expression and activity. Clin Nutr 43(7):1816–1831. https://doi.org/10.1016/j.clnu.2024.06.001
Article CAS PubMed Google Scholar
Dandekar MP, Yin X, Peng T, Devaraj S, Morales R, McPherson DD, Huang SL (2022) Repetitive xenon treatment improves post-stroke sensorimotor and neuropsychiatric dysfunction. J Affect Disord 301:315–330. https://doi.org/10.1016/j.jad.2022.01.025
Article CAS PubMed Google Scholar
Karda R, Perocheau DP, Suff N, Ng J, Delhove J, Buckley SMK, Richards S, Counsell JR, Hagberg H, Johnson MR, McKay TR, Waddington SN (2017) Continual conscious bioluminescent imaging in freely moving somatotransgenic mice. Sci Rep 7(1):6374. https://doi.org/10.1038/s41598-017-06696-w
Article CAS PubMed PubMed Central Google Scholar
Xu XY, Fang Q, Huang W, Li BC, Zhou XH, Zhou ZY, Li J (2020) Effect of electroacupuncture on neurological deficit and activity of clock and Bmal1 in cerebral ischemic rats. Curr Med Sci 40(6):1128–1136. https://doi.org/10.1007/s11596-020-2295-9
Article CAS PubMed Google Scholar
Wu W, Wei Z, Wu Z, Chen J, Liu J, Chen M, Yuan J, Zheng Z, Zhao Z, Lin Q, Liu N, Chen H (2024) Exercise training alleviates neuronal apoptosis and re-establishes mitochondrial quality control after cerebral ischemia by increasing SIRT3 expression. Cell Biol Toxicol 41(1):10. https://doi.org/10.1007/s10565-024-09957-3
Comments (0)