Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179(2):312–339. https://doi.org/10.1016/j.cell.2019.09.001
Article CAS PubMed PubMed Central Google Scholar
Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jonsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15(5):455–532. https://doi.org/10.1016/S1474-4422(16)00062-4
Derouesne C (2008) [Alzheimer and Alzheimer’s disease: the present enlighted by the past. An historical approach]. Psychol Neuropsychiatr Vieil 6 (2):115–128. https://doi.org/10.1684/pnv.2008.0122
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189. https://doi.org/10.1101/cshperspect.a006189
Article CAS PubMed PubMed Central Google Scholar
Cummings J (2023) Anti-amyloid monoclonal antibodies are transformative treatments that redefine Alzheimer’s disease therapeutics. Drugs 83(7):569–576. https://doi.org/10.1007/s40265-023-01858-9
Article CAS PubMed PubMed Central Google Scholar
Brown GC (2019) The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 16(1):180. https://doi.org/10.1186/s12974-019-1564-7
Article CAS PubMed PubMed Central Google Scholar
Bahador M, Cross AS (2007) From therapy to experimental model: a hundred years of endotoxin administration to human subjects. J Endotoxin Res 13(5):251–279. https://doi.org/10.1177/0968051907085986
Article CAS PubMed Google Scholar
Sandiego CM, Gallezot JD, Pittman B, Nabulsi N, Lim K, Lin SF, Matuskey D, Lee JY, O’Connor KC, Huang Y, Carson RE, Hannestad J, Cosgrove KP (2015) Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A 112(40):12468–12473. https://doi.org/10.1073/pnas.1511003112
Article CAS PubMed PubMed Central Google Scholar
Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, Narvaez A, Honrada R, Ruvalcaba D, McGrath MS (2009) Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 206(1–2):121–124. https://doi.org/10.1016/j.jneuroim.2008.09.017
Article CAS PubMed Google Scholar
Andreadou EG, Katsipis G, Tsolaki M, Pantazaki AA (2021) Involvement and relationship of bacterial lipopolysaccharides and cyclooxygenases levels in Alzheimer’s disease and mild cognitive impairment patients. J Neuroimmunol 357:577561. https://doi.org/10.1016/j.jneuroim.2021.577561
Article CAS PubMed Google Scholar
Zhan X, Stamova B, Sharp FR (2018) Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain: a review. Front Aging Neurosci 10:42. https://doi.org/10.3389/fnagi.2018.00042
Article CAS PubMed PubMed Central Google Scholar
Kim HS, Kim S, Shin SJ, Park YH, Nam Y, Kim CW, Lee KW, Kim SM, Jung ID, Yang HD, Park YM, Moon M (2021) Gram-negative bacteria and their lipopolysaccharides in Alzheimer’s disease: pathologic roles and therapeutic implications. Transl Neurodegener 10(1):49. https://doi.org/10.1186/s40035-021-00273-y
Article CAS PubMed PubMed Central Google Scholar
Brown GC, Heneka MT (2024) The endotoxin hypothesis of Alzheimer’s disease. Mol Neurodegener 19(1):30. https://doi.org/10.1186/s13024-024-00722-y
Article CAS PubMed PubMed Central Google Scholar
Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 5:37. https://doi.org/10.1186/1742-2094-5-37
Article CAS PubMed PubMed Central Google Scholar
Wu Z, Ni J, Liu Y, Teeling JL, Takayama F, Collcutt A, Ibbett P, Nakanishi H (2017) Cathepsin B plays a critical role in inducing Alzheimer’s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun 65:350–361. https://doi.org/10.1016/j.bbi.2017.06.002
Article CAS PubMed Google Scholar
Bahar B, Singhrao SK (2021) An evaluation of the molecular mode of action of trans-resveratrol in the Porphyromonas gingivalis lipopolysaccharide challenged neuronal cell model. Mol Biol Rep 48(1):147–156. https://doi.org/10.1007/s11033-020-06024-y
Article CAS PubMed Google Scholar
Zhang Y, Feng S, Nie K, Li Y, Gao Y, Gan R, Wang L, Li B, Sun X, Wang L, Zhang Y (2018) TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem Biophys Res Commun 499(4):797–802. https://doi.org/10.1016/j.bbrc.2018.03.226
Article CAS PubMed Google Scholar
Mizobuchi H, Soma GI (2021) Low-dose lipopolysaccharide as an immune regulator for homeostasis maintenance in the central nervous system through transformation to neuroprotective microglia. Neural Regen Res 16(10):1928–1934. https://doi.org/10.4103/1673-5374.308067
Article CAS PubMed PubMed Central Google Scholar
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140. https://doi.org/10.1523/jneurosci.1202-06.2006
Article CAS PubMed PubMed Central Google Scholar
Paxinos G, Franklin KBJ (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Elsevier Science
Shin SJ, Nam Y, Park YH, Kim MJ, Lee E, Jeon SG, Bae BS, Seo J, Shim SL, Kim JS, Han CK, Kim S, Lee YY, Moon M (2021) Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer’s disease. Free Radic Biol Med 164:233–248. https://doi.org/10.1016/j.freeradbiomed.2020.12.454
Article CAS PubMed Google Scholar
Kim S, Nam Y, Kim C, Lee H, Hong S, Kim HS, Shin SJ, Park YH, Mai HN, Oh SM, Kim KS, Yoo DH, Chung WK, Chung H, Moon M (2020) Neuroprotective and anti-inflammatory effects of low-moderate dose ionizing radiation in models of Alzheimer’s disease. Int J Mol Sci 21 (10). https://doi.org/10.3390/ijms21103678
Haque MM, Kim D, Yu YH, Lim S, Kim DJ, Chang YT, Ha HH, Kim YK (2014) Inhibition of tau aggregation by a rosamine derivative that blocks tau intermolecular disulfide cross-linking. Amyloid 21(3):185–190. https://doi.org/10.3109/13506129.2014.929103
Article CAS PubMed Google Scholar
Lim S, Haque MM, Kim D, Kim DJ, Kim YK (2014) Cell-based models to investigate tau aggregation. Comput Struct Biotechnol J 12(20–21):7–13. https://doi.org/10.1016/j.csbj.2014.09.011
Article PubMed PubMed Central Google Scholar
Arad E, Green H, Jelinek R, Rapaport H (2020) Revisiting thioflavin T (ThT) fluorescence as a marker of protein fibrillation - the prominent role of electrostatic interactions. J Colloid Interface Sci 573:87–95. https://doi.org/10.1016/j.jcis.2020.03.075
Article CAS PubMed Google Scholar
Chen C, Ma X, Wei J, Shakir N, Zhang JK, Zhang L, Nehme A, Cui Y, Ferguson D, Bai F, Qiu S (2022) Early impairment of cortical circuit plasticity and connectivity in the 5XFAD Alzheimer’s disease mouse model. Transl Psychiatry 12(1):371. https://doi.org/10.1038/s41398-022-02132-4
Article CAS PubMed PubMed Central Google Scholar
Eimer WA, Vassar R (2013) Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Abeta42 accumulation and caspase-3 activation. Mol Neurodegener 8:2. https://doi.org/10.1186/1750-1326-8-2
Comments (0)