Alzheimer's disease facts and figures (2023) Alzheimer's Dementia 19(4):1598-1695
Ekundayo BE, Obafemi TO, Adewale OB, Obafemi BA, Oyinloye BE, Ekundayo SK (2024) Oxidative stress, endoplasmic reticulum stress and apoptosis in the pathology of Alzheimer's disease. Cell Biochem Biophys 82(2):457–477
Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH (2022) Phosphorylated tau in Alzheimer's disease and other Tauopathies. Int J Mol Sci 23(21):12841
Article CAS PubMed PubMed Central Google Scholar
Kurz C, Walker L, Rauchmann BS, Perneczky R (2022) Dysfunction of the blood-brain barrier in Alzheimer’s disease: evidence from human studies. Neuropathol Appl Neurobiol 48(3):e12782
Article CAS PubMed Google Scholar
Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, Sepehrband F, Nelson AR, Buennagel DP, Harrington MG et al (2019) Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 25(2):270–276
Article CAS PubMed PubMed Central Google Scholar
Veys K, Fan Z, Ghobrial M, Bouché A, García-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F, Gorski T et al (2020) Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res 127(4):466–482
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Wu J, Wang J, He L, Lai H, Zhang T, Wang X, Li W (2023) Mitochondrial oxidative stress in brain microvascular endothelial cells: triggering blood-brain barrier disruption. Mitochondrion 69:71–82
Article CAS PubMed Google Scholar
Esu EB, Effa EE, Opie ON, Meremikwu MM (2019) Artemether for severe malaria. Cochrane Database Syst Rev 6(6):Cd010678
Wang Y, Han P, Wang M, Weng W, Zhan H, Yu X, Yuan C, Shao M, Sun H (2019) Artemether improves type 1 diabetic kidney disease by regulating mitochondrial function. Am J Transl Res 11(6):3879–3889
CAS PubMed PubMed Central Google Scholar
Cheng X, Zhou P, Weng W, Sun Z, Liu H, Chen Y, Cai Y, Yu X, Wang T, Shao M et al (2022) Artemether attenuates renal tubular injury by targeting mitochondria in adriamycin nephropathy mice. Am J Transl Res 14(3):2002–2012
CAS PubMed PubMed Central Google Scholar
Li HJ, Wang TZ, Hou C, Liu HY, Zhang Y, Xue ZZ, Cai QC, Chen DM, Gao CW, Yang JL et al (2021) Artemether attenuates Aβ25–35-induced cognitive impairments by downregulating Aβ, BACE1, mTOR and Tau proteins. Clin Lab 67(10)
Li S, Zhao X, Lazarovici P, Zheng W (2019) Artemether activation of AMPK/GSK3β(ser9)/Nrf2 signaling confers neuroprotection towards β-amyloid-induced neurotoxicity in 3xTg Alzheimer’s mouse model. Oxid Med Cell Longev 2019:1862437
Article PubMed PubMed Central Google Scholar
Racioppi L, Means AR (2012) Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem 287(38):31658–31665
Article CAS PubMed PubMed Central Google Scholar
Chen M, Zhu JY, Mu WJ, Luo HY, Li Y, Li S, Yan LJ, Li RY, Guo L (2023) Cdo1-Camkk2-AMPK axis confers the protective effects of exercise against NAFLD in mice. Nat Commun 14(1):8391
Article CAS PubMed PubMed Central Google Scholar
Xiong R, Zhou XG, Tang Y, Wu JM, Sun YS, Teng JF, Pan R, Law BY, Zhao Y, Qiu WQ et al (2021) Lychee seed polyphenol protects the blood-brain barrier through inhibiting Aβ(25–35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy in bEnd.3 cells and APP/PS1 mice. Phytother Res 35(2):954–973
Zhao X, Fang J, Li S, Gaur U, Xing X, Wang H, Zheng W (2019) Artemisinin attenuated hydrogen peroxide (H(2)O(2))-induced oxidative injury in SH-SY5Y and hippocampal neurons via the activation of AMPK pathway. Int J Mol Sci 20(11):2680
Li S, Chaudhary SC, Zhao X, Gaur U, Fang J, Yan F, Zheng W (2019) Artemisinin protects human retinal pigmented epithelial cells against hydrogen peroxide-induced oxidative damage by enhancing the activation of AMP-active protein kinase. Int J Biol Sci 15(9):2016–2028
Article CAS PubMed PubMed Central Google Scholar
Jiang Y, Du H, Liu X, Fu X, Li X, Cao Q (2020) Artemisinin alleviates atherosclerotic lesion by reducing macrophage inflammation via regulation of AMPK/NF-κB/NLRP3 inflammasomes pathway. J Drug Target 28(1):70–79
Article CAS PubMed Google Scholar
Bai X, Pei R, Lei W, Zhao M, Zhang J, Tian L, Shang J (2020) Antidiabetic effect of artemether in Db/Db mice involves regulation of AMPK and PI3K/Akt pathways. Front Endocrinol 11:568864
Aday S, Li W, Karp JM, Joshi N (2022) An in vitro blood-brain barrier model to study the penetration of nanoparticles. Bio-Protoc 12(4):e4334
Article PubMed PubMed Central Google Scholar
Spampinato SF, Merlo S, Sano Y, Kanda T, Sortino MA (2017) Astrocytes contribute to Aβ-induced blood-brain barrier damage through activation of endothelial MMP9. J Neurochem 142(3):464–477
Article CAS PubMed Google Scholar
Cai Z, Qiao PF, Wan CQ, Cai M, Zhou NK, Li Q (2018) Role of blood-brain barrier in Alzheimer’s disease. J Alzheimer’s Dis : JAD 63(4):1223–1234
Article CAS PubMed Google Scholar
Han J, Tang H, Yao L, Jin E, Pan W, Chen S (2021) Azilsartan protects against hyperglycemia-induced hyperpermeability of the blood-brain barrier. Bioengineered 12(1):3621–3633
Article CAS PubMed PubMed Central Google Scholar
Huang J, Lan H, Xie C, Wei C, Liu Z, Huang Z, Zhou Z, Chen L (2022) Pramipexole protects against traumatic brain injury-induced blood-brain barrier (BBB) dysfunction. Neurotox Res 40(4):1020–1028
Article CAS PubMed Google Scholar
Qiao N, An Z, Fu Z, Chen X, Tong Q, Zhang Y, Ren H (2023) Kinsenoside alleviates oxidative stress-induced blood-brain barrier dysfunction via promoting Nrf2/HO-1 pathway in ischemic stroke. Eur J Pharmacol 949:175717
Article CAS PubMed Google Scholar
van der Bliek AM, Sedensky MM, Morgan PG (2017) Cell ion. Genetics 207(3):843–871
PubMed PubMed Central Google Scholar
Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X (2015) Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke 46(6):1681–1689
Article CAS PubMed PubMed Central Google Scholar
Wang R, Wang J, Zhang Z, Ma B, Sun S, Gao L, Gao G (2023) FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Mol Med (Cambridge, Mass) 29(1):165
Lee A, Kondapalli C, Virga DM, Lewis TL Jr, Koo SY, Ashok A, Mairet-Coello G, Herzig S, Foretz M, Viollet B et al (2022) Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun 13(1):4444
Comments (0)