Ferriero DM, Fullerton HJ, Bernard TJ et al (2019) Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association [J]. Stroke 50(3):e51–e96. https://doi.org/10.1161/str.0000000000000183
Heit JJ, Muthusami P, Chandra RV et al (2021) Reperfusion therapies for children with arterial ischemic stroke [J]. Top Magn Reson Imaging 30(5):231–243. https://doi.org/10.1097/rmr.0000000000000273
Mastrangelo M, Giordo L, Ricciardi G, De Michele M, Toni D, Leuzzi V (2022) Acute ischemic stroke in childhood: a comprehensive review [J]. Eur J Pediatr 181(1):45–58. https://doi.org/10.1007/s00431-021-04212-x
Zechel S, Werner S, Unsicker K, von Bohlen und Halbach O (2010) Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation [J]. Neuroscientist 16(4):357–373.https://doi.org/10.1177/1073858410371513
Hu B, Zhang H, Xu M et al (2022) Delivery of basic fibroblast growth factor through an in situ forming smart hydrogel activates autophagy in Schwann cells and improves facial nerves generation via the PAK-1 signaling pathway [J]. Front Pharmacol 13:778680. https://doi.org/10.3389/fphar.2022.778680
Article PubMed PubMed Central CAS Google Scholar
Zhang R, Xie L, Wu F et al (2022) ALG-bFGF hydrogel inhibiting autophagy contributes to protection of blood-spinal cord barrier integrity via PI3K/Akt/FOXO1/KLF4 pathway after SCI [J]. Front Pharmacol 13:828896. https://doi.org/10.3389/fphar.2022.828896
Article PubMed PubMed Central CAS Google Scholar
Wu YF, Sun J, Chen M et al (2023) Combined VEGF and bFGF loaded nanofiber membrane protects against neuronal injury and hypomyelination in a rat model of chronic cerebral hypoperfusion [J]. Int Immunopharmacol 125(Pt A):111108. https://doi.org/10.1016/j.intimp.2023.111108
Article PubMed CAS Google Scholar
Feng L, Liao WX, Luo Q et al (2012) Caveolin-1 orchestrates fibroblast growth factor 2 signaling control of angiogenesis in placental artery endothelial cell caveolae [J]. J Cell Physiol 227(6):2480–2491. https://doi.org/10.1002/jcp.22984
Article PubMed PubMed Central CAS Google Scholar
Cui D, Sun D, Wang X et al (2017) Impaired autophagosome clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy [J]. Cell Death Dis 8(7):e2919. https://doi.org/10.1038/cddis.2017.318
Article PubMed PubMed Central CAS Google Scholar
Ni Y, Gu WW, Liu ZH et al (2018) RIP1K contributes to neuronal and astrocytic cell death in ischemic stroke via activating autophagic-lysosomal pathway [J]. Neuroscience 371:60–74. https://doi.org/10.1016/j.neuroscience.2017.10.038
Article PubMed CAS Google Scholar
Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY (2018) Autophagy in ischemic stroke [J]. Prog Neurobiol 163–164:98–117. https://doi.org/10.1016/j.pneurobio.2018.01.001
Article PubMed CAS Google Scholar
Du B, Fu Q, Yang Q et al (2025) Different types of cell death and their interactions in myocardial ischemia-reperfusion injury [J]. Cell Death Discov 11(1):87. https://doi.org/10.1038/s41420-025-02372-5
Article PubMed PubMed Central Google Scholar
Daneshpour A, Shaka Z, Rezaei N (2024) Interplay of cell death pathways and immune responses in ischemic stroke: insights into novel biomarkers [J]. Rev Neurosci. https://doi.org/10.1515/revneuro-2024-0128
Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM (2025) Insights on the crosstalk among different cell death mechanisms [J]. Cell Death Discov 11(1):56. https://doi.org/10.1038/s41420-025-02328-9
Article PubMed PubMed Central Google Scholar
Geng J, Ito Y, Shi L et al (2017) Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis [J]. Nat Commun 8(1):359. https://doi.org/10.1038/s41467-017-00406-w
Article PubMed PubMed Central CAS Google Scholar
Nadendla EK, Tweedell RE, Kasof G, Kanneganti TD (2025) Caspases: structural and molecular mechanisms and functions in cell death, innate immunity, and disease [J]. Cell Discov 11(1):42. https://doi.org/10.1038/s41421-025-00791-3
Article PubMed PubMed Central CAS Google Scholar
Subramanian A, Tamilanban T, Alsayari A et al (2022) Trilateral association of autophagy, mTOR and Alzheimer’s disease: potential pathway in the development for Alzheimer’s disease therapy [J]. Front Pharmacol 13:1094351. https://doi.org/10.3389/fphar.2022.1094351
Article PubMed PubMed Central CAS Google Scholar
Lannes-Costa PS, Pimentel B, Nagao PE (2022) Role of caveolin-1 in sepsis - a mini-review [J]. Front Immunol 13:902907. https://doi.org/10.3389/fimmu.2022.902907
Article PubMed PubMed Central CAS Google Scholar
Zhang X, Ramírez CM, Aryal B et al (2020) Cav-1 (caveolin-1) deficiency increases autophagy in the endothelium and attenuates vascular inflammation and atherosclerosis [J]. Arterioscler Thromb Vasc Biol 40(6):1510–1522. https://doi.org/10.1161/atvbaha.120.314291
Article PubMed PubMed Central CAS Google Scholar
Nah J, Yoo SM, Jung S et al (2017) Phosphorylated CAV1 activates autophagy through an interaction with BECN1 under oxidative stress [J]. Cell Death Dis 8(5):e2822. https://doi.org/10.1038/cddis.2017.71
Article PubMed PubMed Central CAS Google Scholar
Qu L, Li Y, Chen C et al (2022) Caveolin-1 identified as a key mediator of acute lung injury using bioinformatics and functional research [J]. Cell Death Dis 13(8):686. https://doi.org/10.1038/s41419-022-05134-8
Article PubMed PubMed Central CAS Google Scholar
Guo Z, Hu X, Xing Z et al (2015) Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway [J]. Mol Cell Biochem 406(1–2):111–119. https://doi.org/10.1007/s11010-015-2429-8
Article PubMed PubMed Central CAS Google Scholar
Teng H, Wang D, Lu J, Zhou Y, Pang Y, Li Q (2019) Novel insights into the evolution of the caveolin superfamily and mechanisms of antiapoptotic effects and cell proliferation in lamprey [J]. Dev Comp Immunol 95:118–128. https://doi.org/10.1016/j.dci.2019.01.005
Article PubMed CAS Google Scholar
Ye LB, Yu XC, Xia QH et al (2017) Erratum to: regulation of caveolin-1 and junction proteins by bFGF contributes to the integrity of blood-spinal cord barrier and functional recovery [J]. Neurotherapeutics 14(3):828–829. https://doi.org/10.1007/s13311-016-0495-6
Pang Q, Zhang H, Chen Z et al (2017) Role of caveolin-1/vascular endothelial growth factor pathway in basic fibroblast growth factor-induced angiogenesis and neurogenesis after treadmill training following focal cerebral ischemia in rats [J]. Brain Res 1663:9–19. https://doi.org/10.1016/j.brainres.2017.03.012
Article PubMed CAS Google Scholar
Costain WJ, Haqqani AS, Rasquinha I et al (2010) Proteomic analysis of synaptosomal protein expression reveals that cerebral ischemia alters lysosomal Psap processing [J]. Proteomics 10(18):3272–3291. https://doi.org/10.1002/pmic.200900447
Article PubMed CAS Google Scholar
Che H, Yan Y, Kang XH et al (2017) MicroRNA-27a promotes inefficient lysosomal clearance in the hippocampi of rats following chronic brain hypoperfusion [J]. Mol Neurobiol 54(4):2595–2610. https://doi.org/10.1007/s12035-016-9856-8
Article PubMed CAS Google Scholar
Zhang X, Wei M, Fan J et al (2021) Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons [J]. Autophagy 17(6):1519–1542. https://doi.org/10.1080/15548627.2020.1840796
Comments (0)