bFGF Knockdown Inhibits mTOR Signaling by Suppressing Caveolin-1 and Aggravates Cognitive Damage After Arterial Ischemic Brain Injury in Juvenile Rats

Ferriero DM, Fullerton HJ, Bernard TJ et al (2019) Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association [J]. Stroke 50(3):e51–e96. https://doi.org/10.1161/str.0000000000000183

Article  PubMed  Google Scholar 

Heit JJ, Muthusami P, Chandra RV et al (2021) Reperfusion therapies for children with arterial ischemic stroke [J]. Top Magn Reson Imaging 30(5):231–243. https://doi.org/10.1097/rmr.0000000000000273

Article  PubMed  Google Scholar 

Mastrangelo M, Giordo L, Ricciardi G, De Michele M, Toni D, Leuzzi V (2022) Acute ischemic stroke in childhood: a comprehensive review [J]. Eur J Pediatr 181(1):45–58. https://doi.org/10.1007/s00431-021-04212-x

Article  PubMed  Google Scholar 

Zechel S, Werner S, Unsicker K, von Bohlen und Halbach O (2010) Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation [J]. Neuroscientist 16(4):357–373.https://doi.org/10.1177/1073858410371513

Hu B, Zhang H, Xu M et al (2022) Delivery of basic fibroblast growth factor through an in situ forming smart hydrogel activates autophagy in Schwann cells and improves facial nerves generation via the PAK-1 signaling pathway [J]. Front Pharmacol 13:778680. https://doi.org/10.3389/fphar.2022.778680

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang R, Xie L, Wu F et al (2022) ALG-bFGF hydrogel inhibiting autophagy contributes to protection of blood-spinal cord barrier integrity via PI3K/Akt/FOXO1/KLF4 pathway after SCI [J]. Front Pharmacol 13:828896. https://doi.org/10.3389/fphar.2022.828896

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu YF, Sun J, Chen M et al (2023) Combined VEGF and bFGF loaded nanofiber membrane protects against neuronal injury and hypomyelination in a rat model of chronic cerebral hypoperfusion [J]. Int Immunopharmacol 125(Pt A):111108. https://doi.org/10.1016/j.intimp.2023.111108

Article  PubMed  CAS  Google Scholar 

Feng L, Liao WX, Luo Q et al (2012) Caveolin-1 orchestrates fibroblast growth factor 2 signaling control of angiogenesis in placental artery endothelial cell caveolae [J]. J Cell Physiol 227(6):2480–2491. https://doi.org/10.1002/jcp.22984

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cui D, Sun D, Wang X et al (2017) Impaired autophagosome clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy [J]. Cell Death Dis 8(7):e2919. https://doi.org/10.1038/cddis.2017.318

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ni Y, Gu WW, Liu ZH et al (2018) RIP1K contributes to neuronal and astrocytic cell death in ischemic stroke via activating autophagic-lysosomal pathway [J]. Neuroscience 371:60–74. https://doi.org/10.1016/j.neuroscience.2017.10.038

Article  PubMed  CAS  Google Scholar 

Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY (2018) Autophagy in ischemic stroke [J]. Prog Neurobiol 163–164:98–117. https://doi.org/10.1016/j.pneurobio.2018.01.001

Article  PubMed  CAS  Google Scholar 

Du B, Fu Q, Yang Q et al (2025) Different types of cell death and their interactions in myocardial ischemia-reperfusion injury [J]. Cell Death Discov 11(1):87. https://doi.org/10.1038/s41420-025-02372-5

Article  PubMed  PubMed Central  Google Scholar 

Daneshpour A, Shaka Z, Rezaei N (2024) Interplay of cell death pathways and immune responses in ischemic stroke: insights into novel biomarkers [J]. Rev Neurosci. https://doi.org/10.1515/revneuro-2024-0128

Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM (2025) Insights on the crosstalk among different cell death mechanisms [J]. Cell Death Discov 11(1):56. https://doi.org/10.1038/s41420-025-02328-9

Article  PubMed  PubMed Central  Google Scholar 

Geng J, Ito Y, Shi L et al (2017) Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis [J]. Nat Commun 8(1):359. https://doi.org/10.1038/s41467-017-00406-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nadendla EK, Tweedell RE, Kasof G, Kanneganti TD (2025) Caspases: structural and molecular mechanisms and functions in cell death, innate immunity, and disease [J]. Cell Discov 11(1):42. https://doi.org/10.1038/s41421-025-00791-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Subramanian A, Tamilanban T, Alsayari A et al (2022) Trilateral association of autophagy, mTOR and Alzheimer’s disease: potential pathway in the development for Alzheimer’s disease therapy [J]. Front Pharmacol 13:1094351. https://doi.org/10.3389/fphar.2022.1094351

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lannes-Costa PS, Pimentel B, Nagao PE (2022) Role of caveolin-1 in sepsis - a mini-review [J]. Front Immunol 13:902907. https://doi.org/10.3389/fimmu.2022.902907

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang X, Ramírez CM, Aryal B et al (2020) Cav-1 (caveolin-1) deficiency increases autophagy in the endothelium and attenuates vascular inflammation and atherosclerosis [J]. Arterioscler Thromb Vasc Biol 40(6):1510–1522. https://doi.org/10.1161/atvbaha.120.314291

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nah J, Yoo SM, Jung S et al (2017) Phosphorylated CAV1 activates autophagy through an interaction with BECN1 under oxidative stress [J]. Cell Death Dis 8(5):e2822. https://doi.org/10.1038/cddis.2017.71

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qu L, Li Y, Chen C et al (2022) Caveolin-1 identified as a key mediator of acute lung injury using bioinformatics and functional research [J]. Cell Death Dis 13(8):686. https://doi.org/10.1038/s41419-022-05134-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo Z, Hu X, Xing Z et al (2015) Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway [J]. Mol Cell Biochem 406(1–2):111–119. https://doi.org/10.1007/s11010-015-2429-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Teng H, Wang D, Lu J, Zhou Y, Pang Y, Li Q (2019) Novel insights into the evolution of the caveolin superfamily and mechanisms of antiapoptotic effects and cell proliferation in lamprey [J]. Dev Comp Immunol 95:118–128. https://doi.org/10.1016/j.dci.2019.01.005

Article  PubMed  CAS  Google Scholar 

Ye LB, Yu XC, Xia QH et al (2017) Erratum to: regulation of caveolin-1 and junction proteins by bFGF contributes to the integrity of blood-spinal cord barrier and functional recovery [J]. Neurotherapeutics 14(3):828–829. https://doi.org/10.1007/s13311-016-0495-6

Article  PubMed  Google Scholar 

Pang Q, Zhang H, Chen Z et al (2017) Role of caveolin-1/vascular endothelial growth factor pathway in basic fibroblast growth factor-induced angiogenesis and neurogenesis after treadmill training following focal cerebral ischemia in rats [J]. Brain Res 1663:9–19. https://doi.org/10.1016/j.brainres.2017.03.012

Article  PubMed  CAS  Google Scholar 

Costain WJ, Haqqani AS, Rasquinha I et al (2010) Proteomic analysis of synaptosomal protein expression reveals that cerebral ischemia alters lysosomal Psap processing [J]. Proteomics 10(18):3272–3291. https://doi.org/10.1002/pmic.200900447

Article  PubMed  CAS  Google Scholar 

Che H, Yan Y, Kang XH et al (2017) MicroRNA-27a promotes inefficient lysosomal clearance in the hippocampi of rats following chronic brain hypoperfusion [J]. Mol Neurobiol 54(4):2595–2610. https://doi.org/10.1007/s12035-016-9856-8

Article  PubMed  CAS  Google Scholar 

Zhang X, Wei M, Fan J et al (2021) Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons [J]. Autophagy 17(6):1519–1542. https://doi.org/10.1080/15548627.2020.1840796

Article 

Comments (0)

No login
gif