Altered Lipid Homeostasis in Mutant Astrocytes from HiPSCs

Zhu Y, Burg T, Neyrinck K, Vervliet T, Nami F, Vervoort E, Ahuja K, Sassano ML, Chai YC, Tharkeshwar AK et al (2024) Disruption of MAM integrity in mutant FUS oligodendroglial progenitors from hiPSCs. Acta Neuropathol 147:6. https://doi.org/10.1007/s00401-023-02666-x

Article  PubMed  PubMed Central  Google Scholar 

Phan K, He Y, Bhatia S, Pickford R, McDonald G, Mazumder S, Timmins HC, Hodges JR, Piguet O, Dzamko N, et al: Multiple pathways of lipid dysregulation in amyotrophic lateral sclerosis. Brain Commun 2023, 5:fcac340. https://doi.org/10.1093/braincomms/fcac340

Agrawal I, Lim YS, Ng SY, Ling SC (2022) Deciphering lipid dysregulation in ALS: from mechanisms to translational medicine. Translational neurodegeneration 11:48. https://doi.org/10.1186/s40035-022-00322-0

Article  PubMed  PubMed Central  Google Scholar 

Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, Song S, Likhite S, Murtha MJ, Foust KD (2011) Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29:824–828

Article  PubMed  PubMed Central  Google Scholar 

Stoklund Dittlau K, Terrie L, Baatsen P, Kerstens A, De Swert L, Janky Rs, Corthout N, Masrori P, Van Damme P, Hyttel P, et al: FUS-ALS hiPSC-derived astrocytes impair human motor units through both gain-of-toxicity and loss-of-support mechanisms. Molecular Neurodegeneration 2023, 18:5. https://doi.org/10.1186/s13024-022-00591-3

Guttenplan KA, Weigel MK, Adler DI, Couthouis J, Liddelow SA, Gitler AD, Barres BA (2020) Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat Commun 11:3753

Article  PubMed  PubMed Central  Google Scholar 

Neyrinck K, Van Den Daele J, Vervliet T, De Smedt J, Wierda K, Nijs M, Vanbokhoven T, D’Hondt A, Planque M, Fendt SM et al (2021) SOX9-induced Generation of Functional Astrocytes Supporting Neuronal Maturation in an All-human System. Stem cell reviews and reports 17:1855–1873. https://doi.org/10.1007/s12015-021-10179-x

Article  PubMed  PubMed Central  Google Scholar 

van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124. https://doi.org/10.1038/nrm2330

Article  PubMed  PubMed Central  Google Scholar 

Popov A, Brazhe N, Fedotova A, Tiaglik A, Bychkov M, Morozova K, Brazhe A, Aronov D, Lyukmanova E, Lazareva N et al (2022) A high-fat diet changes astrocytic metabolism to promote synaptic plasticity and behavior. Acta Physiol (Oxf) 236:e13847. https://doi.org/10.1111/apha.13847

Article  PubMed  Google Scholar 

Smolič T, Zorec R, Vardjan N: Pathophysiology of Lipid Droplets in Neuroglia. Antioxidants (Basel) 2021. 11. https://doi.org/10.3390/antiox11010022

Mohassel P, Donkervoort S, Lone MA, Nalls M, Gable K, Gupta SD, Foley AR, Hu Y, Saute JAM, Moreira AL et al (2021) Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat Med 27:1197–1204. https://doi.org/10.1038/s41591-021-01346-1

Article  PubMed  PubMed Central  Google Scholar 

Johnson JO, Chia R, Miller DE, Li R, Kumaran R, Abramzon Y, Alahmady N, Renton AE, Topp SD, Gibbs JR et al (2021) Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurol 78:1236–1248. https://doi.org/10.1001/jamaneurol.2021.2598

Article  PubMed  Google Scholar 

Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19:281–296. https://doi.org/10.1038/nrm.2017.138

Article  PubMed  Google Scholar 

Sol J, Jové M, Povedano M, Sproviero W, Domínguez R, Piñol-Ripoll G, Romero-Guevara R, Hye A, Al-Chalabi A, Torres P, et al: Lipidomic traits of plasma and cerebrospinal fluid in amyotrophic lateral sclerosis correlate with disease progression. Brain Commun 2021, 3:fcab143. https://doi.org/10.1093/braincomms/fcab143

Burg T, Rossaert E, Moisse M, Van Damme P, Van Den Bosch L (2021) Histone Deacetylase Inhibition Regulates Lipid Homeostasis in a Mouse Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 22:11224

Article  PubMed  PubMed Central  Google Scholar 

Funikov SY, Rezvykh AP, Mazin PV, Morozov AV, Maltsev AV, Chicheva MM, Vikhareva EA, Evgen’ev MB, Ustyugov AA: FUS(1–359) transgenic mice as a model of ALS: pathophysiological and molecular aspects of the proteinopathy. neurogenetics 2018, 19:189–204. https://doi.org/10.1007/s10048-018-0553-9

Rossaert E, Pollari E, Jaspers T, Van Helleputte L, Jarpe M, Van Damme P, De Bock K, Moisse M, Van Den Bosch L (2019) Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol Commun 7:107. https://doi.org/10.1186/s40478-019-0750-2

Article  PubMed  PubMed Central  Google Scholar 

Guo W, Naujock M, Fumagalli L, Vandoorne T, Baatsen P, Boon R, Ordovás L, Patel A, Welters M, Vanwelden T et al (2017) HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 8:861. https://doi.org/10.1038/s41467-017-00911-y

Article  PubMed  PubMed Central  Google Scholar 

Volpato V, Webber C: Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis Model Mech 2020, 13. https://doi.org/10.1242/dmm.042317

Comments (0)

No login
gif