Rapamycin Alleviates Neuronal Injury and Modulates Microglial Activation After Cerebral Ischemia

ElAli A, Jean LeBlanc N (2016) The role of monocytes in ischemic stroke pathobiology: new avenues to explore. Front Aging Neurosci 8:29. https://doi.org/10.3389/fnagi.2016.00029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: focus on choline-containing phospholipids. J Neural Transm (Vienna) 107(8–9):1027–1063. https://doi.org/10.1007/s007020070051

Article  CAS  PubMed  Google Scholar 

Kirov SA, Fomitcheva IV, Sword J (2020) Rapid neuronal ultrastructure disruption and recovery during spreading depolarization-induced cytotoxic edema. Cereb Cortex 30(10):5517–5531. https://doi.org/10.1093/cercor/bhaa134

Article  PubMed  PubMed Central  Google Scholar 

Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M et al (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234. https://doi.org/10.1016/j.cell.2009.12.055

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(1):133–138. https://doi.org/10.1111/j.1471-4159.2009.05897.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40(5):e331-339. https://doi.org/10.1161/STROKEAHA.108.531632

Article  PubMed  Google Scholar 

Arumugam TV, Baik SH, Balaganapathy P, Sobey CG, Mattson MP, Jo DG (2018) Notch signaling and neuronal death in stroke. Prog Neurobiol 165–167:103–116. https://doi.org/10.1016/j.pneurobio.2018.03.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuttolomondo A, Di Sciacca R, Di Raimondo D, Arnao V, Renda C, Pinto A, Licata G (2009) Neuron protection as a therapeutic target in acute ischemic stroke. Curr Top Med Chem 9(14):1317–1334. https://doi.org/10.2174/156802609789869646

Article  CAS  PubMed  Google Scholar 

Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201. https://doi.org/10.1038/nrneurol.2010.17

Article  PubMed  Google Scholar 

Yang X, Feng P, Zhang X, Li D, Wang R, Ji C, Li G, Holscher C (2019) The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology 158:107748. https://doi.org/10.1016/j.neuropharm.2019.107748

Article  CAS  PubMed  Google Scholar 

Zhang S (2019) Microglial activation after ischaemic stroke. Stroke Vasc Neurol 4(2):71–74. https://doi.org/10.1136/svn-2018-000196

Article  PubMed  PubMed Central  Google Scholar 

Hou B, Jiang C, Wang D, Wang G, Wang Z, Zhu M, Kang Y, Su J et al (2020) Pharmacological targeting of CSF1R inhibits microglial proliferation and aggravates the progression of cerebral ischemic pathology. Front Cell Neurosci 14:267. https://doi.org/10.3389/fncel.2020.00267

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li T, Zhang S (2016) Microgliosis in the injured brain: infiltrating cells and reactive microglia both play a role. Neuroscientist 22(2):165–170. https://doi.org/10.1177/1073858415572079

Article  PubMed  Google Scholar 

Jin X, Ishii H, Bai Z, Itokazu T, Yamashita T (2012) Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS ONE 7(7):e41892. https://doi.org/10.1371/journal.pone.0041892

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai W, Dai X, Chen J, Zhao J, Xu M, Zhang L, Yang B, Zhang W et al (2019) STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 4:20. https://doi.org/10.1172/jci.insight.131355

Article  Google Scholar 

Li S, Hua X, Zheng M, Wu J, Ma Z, Xing X, Ma J, Zhang J et al (2021) PLXNA2 knockdown promotes M2 microglia polarization through mTOR/STAT3 signaling to improve functional recovery in rats after cerebral ischemia/reperfusion injury. Exp Neurol 346:113854. https://doi.org/10.1016/j.expneurol.2021.113854

Article  CAS  PubMed  Google Scholar 

Lu Y, Zhou M, Li Y, Li Y, Hua Y, Fan Y (2021) Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways. Biochem Pharmacol 186:114464. https://doi.org/10.1016/j.bcp.2021.114464

Article  CAS  PubMed  Google Scholar 

Gao YY, Tao T, Wu D, Zhuang Z, Lu Y, Wu LY, Liu GJ, Zhou Y et al (2021) MFG-E8 attenuates inflammation in subarachnoid hemorrhage by driving microglial M2 polarization. Exp Neurol 336:113532. https://doi.org/10.1016/j.expneurol.2020.113532

Article  CAS  PubMed  Google Scholar 

Lei X, Li H, Li M, Dong Q, Zhao H, Zhang Z, Sun B, Mao L (2021) The novel Nrf2 activator CDDO-EA attenuates cerebral ischemic injury by promoting microglia/macrophage polarization toward M2 phenotype in mice. CNS Neurosci Ther 27(1):82–91. https://doi.org/10.1111/cns.13496

Article  CAS  PubMed  Google Scholar 

Song Z, Feng J, Zhang Q, Deng S, Yu D, Zhang Y, Li T (2021) Tanshinone IIA protects against cerebral ischemia reperfusion injury by regulating microglial activation and polarization via NF-kappaB pathway. Front Pharmacol 12:641848. https://doi.org/10.3389/fphar.2021.641848

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Y, Yu JB, Gong JB, Shen J, Ye D, Cheng DX, Xie ZK, Zeng JP et al (2021) PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging-Us 13(3):3405–3427

Article  CAS  Google Scholar 

Li QQ, Ding DH, Wang XY, Sun YY, Wu J (2021) Lipoxin A4 regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the Notch signaling pathway. Exp Neurol 339:113645. https://doi.org/10.1016/j.expneurol.2021.113645

Article  CAS  PubMed  Google Scholar 

Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26(1):86–93. https://doi.org/10.1016/j.nbd.2006.12.003

Article  CAS  PubMed  Google Scholar 

Zhang G, Yin L, Luo Z, Chen X, He Y, Yu X, Wang M, Tian F et al (2021) Effects and potential mechanisms of rapamycin on MPTP-induced acute Parkinson’s disease in mice. Ann Palliat Med 10(3):2889–2897. https://doi.org/10.21037/apm-20-1096

Article  PubMed  Google Scholar 

Lin AL, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ, Javors M, Shih YY et al (2013) Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab 33(9):1412–1421. https://doi.org/10.1038/jcbfm.2013.82

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao C, Yan Y, Chen G, Wang T, Luo C, Zhang M, Chen X, Tao L (2020) Autophagy activation represses pyroptosis through the IL-13 and JAK1/STAT1 pathways in a mouse model of moderate traumatic brain injury. ACS Chem Neurosci 11(24):4231–4239. https://doi.org/10.1021/acschemneuro.0c00517

Article  CAS  PubMed  Google Scholar 

Jiang J, Jiang J, Zuo Y, Gu Z (2013) Rapamycin protects the mitochondria against oxidative stress and apoptosis in a rat model of Parkinson’s disease. Int J Mol Med 31(4):825–832. https://doi.org/10.3892/ijmm.2013.1280

Article 

Comments (0)

No login
gif