Chaihu Guizhi Ganjiang Decoction ameliorates chronic pancreatitis by modulating the SK1/S1P signaling pathway

Witt H, Apte M, Keim V, Wilson J (2007) Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology 132(4):1557–1573. https://doi.org/10.1053/j.gastro.2007.03.001

Article  CAS  PubMed  Google Scholar 

Beyer G, Habtezion A, Werner J, Lerch MM, Mayerle J (2020) Chronic pancreatitis. Lancet 396(10249):499–512. https://doi.org/10.1016/s0140-6736(20)31318-0

Article  PubMed  Google Scholar 

Laura A, Johan BF, Ju Youn K, Jelena T, Ilya G, Mason M et al (2015) Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A 112(45):E6166-6174. https://doi.org/10.1073/pnas.1519384112

Article  CAS  Google Scholar 

Diakopoulos K, Lesina M, Wörmann S, Song L, Aichler M, Schild L et al (2015) Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology 148(3):626-638.e617. https://doi.org/10.1053/j.gastro.2014.12.003

Article  PubMed  Google Scholar 

Gukovsky I, Pandol SJ, Mareninova OA, Shalbueva N, Jia W, Gukovskaya AS (2012) Impaired autophagy and organellar dysfunction in pancreatitis. J Gastroenterol Hepatol 27(Suppl 2):27–32. https://doi.org/10.1111/j.1440-1746.2011.07004.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao L, Dong X, Gong W, Huang W, Xue J, Zhu Q et al (2021) Acinar cell NLRP3 inflammasome and gasdermin D (GSDMD) activation mediates pyroptosis and systemic inflammation in acute pancreatitis. Br J Pharmacol 178(17):3533–3552. https://doi.org/10.1111/bph.15499

Article  CAS  PubMed  Google Scholar 

Erkan M, Adler G, Apte M, Bachem M, Buchholz M, Detlefsen S et al (2012) StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 61(2):172–178. https://doi.org/10.1136/gutjnl-2011-301220

Article  CAS  PubMed  Google Scholar 

Endo S, Nakata K, Ohuchida K, Takesue S, Nakayama H, Abe T et al (2017) Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth of pancreatic tumors in mice. Gastroenterology 152(6):1492–1506. https://doi.org/10.1053/j.gastro.2017.01.010

Article  CAS  PubMed  Google Scholar 

Li CX, Cui LH, Zhuo YZ, Hu JG, Cui NQ, Zhang SK (2018) Inhibiting autophagy promotes collagen degradation by regulating matrix metalloproteinases in pancreatic stellate cells. Life Sci 208:276–283. https://doi.org/10.1016/j.lfs.2018.07.049

Article  CAS  PubMed  Google Scholar 

Li CX, Cui LH, Zhang LQ, Yang L, Zhuo YZ, Cui NQ et al (2021) Role of NLR family pyrin domain-containing 3 inflammasome in the activation of pancreatic stellate cells. Exp Cell Res 404:112634. https://doi.org/10.1016/j.yexcr.2021.112634

Article  CAS  PubMed  Google Scholar 

Rosen H, Stevens R, Hanson M, Roberts E, Oldstone M (2013) Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu Rev Biochem 82:637–662. https://doi.org/10.1146/annurev-biochem-062411-130916

Article  CAS  PubMed  Google Scholar 

Książek M, Chacińska M, Chabowski A, Baranowski M (2015) Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res 56(7):1271–1281. https://doi.org/10.1194/jlr.R059543

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baeyens A, Bracero S, Chaluvadi VS, Khodadadi-Jamayran A, Cammer M, Schwab SR (2021) Monocyte-derived S1P in the lymph node regulates immune responses. Nature 592(7853):290–295. https://doi.org/10.1038/s41586-021-03227-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang L, Yue S, Yang L, Liu X, Han Z, Zhang Y et al (2013) Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J Hepatol 59(1):114–123. https://doi.org/10.1016/j.jhep.2013.02.021

Article  CAS  PubMed  Google Scholar 

Wang E, He X, Zeng M (2018) The role of S1P and the related signaling pathway in the development of tissue fibrosis. Front Pharmacol 9:1504. https://doi.org/10.3389/fphar.2018.01504

Article  CAS  PubMed  Google Scholar 

Huang L, Berdyshev E, Tran J, Xie L, Chen J, Ebenezer D et al (2015) Sphingosine-1-phosphate lyase is an endogenous suppressor of pulmonary fibrosis: role of S1P signalling and autophagy. Thorax 70(12):1138–1148. https://doi.org/10.1136/thoraxjnl-2014-206684

Article  PubMed  Google Scholar 

Hou L, Yang L, Chang N, Zhao X, Zhou X, Dong C et al (2020) Macrophage sphingosine 1-phosphate receptor 2 blockade attenuates liver inflammation and fibrogenesis triggered by NLRP3 inflammasome. Front Immunol 11:1149. https://doi.org/10.3389/fimmu.2020.01149

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konończuk T, Łukaszuk B, Żendzian-Piotrowska M, Dąbrowski A, Krzyżak M, Ostrowska L et al (2017) Plasma sphingolipids in acute pancreatitis. Int J Mol Sci. https://doi.org/10.3390/ijms18122606

Article  PubMed  PubMed Central  Google Scholar 

Yang J, Tang X, Li B, Shi J (2022) Sphingosine 1-phosphate receptor 2 mediated early stages of pancreatic and systemic inflammatory responses via NF-kappa B activation in acute pancreatitis. Cell Commun Signal 20(1):157. https://doi.org/10.1186/s12964-022-00971-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui L, Li C, Zhang G, Zhang L, Yao G, Zhuo Y et al (2023) S1P/S1PR2 promote pancreatic stellate cell activation and pancreatic fibrosis in chronic pancreatitis by regulating autophagy and the NLRP3 inflammasome. Chem Biol Interact 380:110541. https://doi.org/10.1016/j.cbi.2023.110541

Article  CAS  PubMed  Google Scholar 

Wang D, Han S, Lv G, Hu Y, Zhuo W, Zeng Z et al (2023) Pancreatic acinar cells-derived sphingosine-1-phosphate contributes to fibrosis of chronic pancreatitis via inducing autophagy and activation of pancreatic stellate cells. Gastroenterology 165(6):1488-1504.e1420. https://doi.org/10.1053/j.gastro.2023.08.029

Article  CAS  PubMed  Google Scholar 

Chen F, Guo Y, Meng X, Zhang S (1995) Identification of chaihu guizhi ganjiang Decoction by three dimensional HPLC. Zhongguo Zhong Yao Za Zhi 20(4):223–224

CAS  PubMed  Google Scholar 

Itoh T, Michijiri S, Murai S, Saito H, Saito H, Itsukaichi O et al (1996) Effects of chaihu-guizhi-ganjiang-tang on the levels of monoamines and their related substances, and acetylcholine in discrete brain regions of mice. Am J Chin Med 24(1):53–64. https://doi.org/10.1142/s0192415x96000086

Article  CAS  PubMed  Google Scholar 

Cui L, Li C, Shang Y, Li D, Zhuo Y, Yang L et al (2021) Chaihu Guizhi Ganjiang Decoction ameliorates pancreatic fibrosis via JNK/mTOR signaling pathway. Front Pharmacol 12:679557. https://doi.org/10.3389/fphar.2021.679557

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui L-H, Li C-X, Zhuo Y-Z, Yang L, Cui N-Q, Zhang S-K (2019) Saikosaponin d ameliorates pancreatic fibrosis by inhibiting autophagy of pancreatic stellate cells via PI3K/Akt/mTOR pathway. Chemico-biological Interact 300:18–26

Article  CAS  Google Scholar 

Dick TE, Hengst JA, Fox TE, Colledge AL, Kale VP, Sung SS et al (2015) The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharmacol Exp Ther 352(3):494–508. https://doi.org/10.1124/jpet.114.219659

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niina Y, Ito T, Oono T, Nakamura T, Fujimori N, Igarashi H et al (2014) A sustained prostacyclin analog, ONO-1301, attenuates pancreatic fibrosis in experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology 14(3):201–210. https://doi.org/10.1016/j.pan.2014.02.009

Article  CAS  PubMed 

Comments (0)

No login
gif