Witt H, Apte M, Keim V, Wilson J (2007) Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology 132(4):1557–1573. https://doi.org/10.1053/j.gastro.2007.03.001
Article CAS PubMed Google Scholar
Beyer G, Habtezion A, Werner J, Lerch MM, Mayerle J (2020) Chronic pancreatitis. Lancet 396(10249):499–512. https://doi.org/10.1016/s0140-6736(20)31318-0
Laura A, Johan BF, Ju Youn K, Jelena T, Ilya G, Mason M et al (2015) Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A 112(45):E6166-6174. https://doi.org/10.1073/pnas.1519384112
Diakopoulos K, Lesina M, Wörmann S, Song L, Aichler M, Schild L et al (2015) Impaired autophagy induces chronic atrophic pancreatitis in mice via sex- and nutrition-dependent processes. Gastroenterology 148(3):626-638.e617. https://doi.org/10.1053/j.gastro.2014.12.003
Gukovsky I, Pandol SJ, Mareninova OA, Shalbueva N, Jia W, Gukovskaya AS (2012) Impaired autophagy and organellar dysfunction in pancreatitis. J Gastroenterol Hepatol 27(Suppl 2):27–32. https://doi.org/10.1111/j.1440-1746.2011.07004.x
Article CAS PubMed PubMed Central Google Scholar
Gao L, Dong X, Gong W, Huang W, Xue J, Zhu Q et al (2021) Acinar cell NLRP3 inflammasome and gasdermin D (GSDMD) activation mediates pyroptosis and systemic inflammation in acute pancreatitis. Br J Pharmacol 178(17):3533–3552. https://doi.org/10.1111/bph.15499
Article CAS PubMed Google Scholar
Erkan M, Adler G, Apte M, Bachem M, Buchholz M, Detlefsen S et al (2012) StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 61(2):172–178. https://doi.org/10.1136/gutjnl-2011-301220
Article CAS PubMed Google Scholar
Endo S, Nakata K, Ohuchida K, Takesue S, Nakayama H, Abe T et al (2017) Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth of pancreatic tumors in mice. Gastroenterology 152(6):1492–1506. https://doi.org/10.1053/j.gastro.2017.01.010
Article CAS PubMed Google Scholar
Li CX, Cui LH, Zhuo YZ, Hu JG, Cui NQ, Zhang SK (2018) Inhibiting autophagy promotes collagen degradation by regulating matrix metalloproteinases in pancreatic stellate cells. Life Sci 208:276–283. https://doi.org/10.1016/j.lfs.2018.07.049
Article CAS PubMed Google Scholar
Li CX, Cui LH, Zhang LQ, Yang L, Zhuo YZ, Cui NQ et al (2021) Role of NLR family pyrin domain-containing 3 inflammasome in the activation of pancreatic stellate cells. Exp Cell Res 404:112634. https://doi.org/10.1016/j.yexcr.2021.112634
Article CAS PubMed Google Scholar
Rosen H, Stevens R, Hanson M, Roberts E, Oldstone M (2013) Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu Rev Biochem 82:637–662. https://doi.org/10.1146/annurev-biochem-062411-130916
Article CAS PubMed Google Scholar
Książek M, Chacińska M, Chabowski A, Baranowski M (2015) Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res 56(7):1271–1281. https://doi.org/10.1194/jlr.R059543
Article CAS PubMed PubMed Central Google Scholar
Baeyens A, Bracero S, Chaluvadi VS, Khodadadi-Jamayran A, Cammer M, Schwab SR (2021) Monocyte-derived S1P in the lymph node regulates immune responses. Nature 592(7853):290–295. https://doi.org/10.1038/s41586-021-03227-6
Article CAS PubMed PubMed Central Google Scholar
Yang L, Yue S, Yang L, Liu X, Han Z, Zhang Y et al (2013) Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J Hepatol 59(1):114–123. https://doi.org/10.1016/j.jhep.2013.02.021
Article CAS PubMed Google Scholar
Wang E, He X, Zeng M (2018) The role of S1P and the related signaling pathway in the development of tissue fibrosis. Front Pharmacol 9:1504. https://doi.org/10.3389/fphar.2018.01504
Article CAS PubMed Google Scholar
Huang L, Berdyshev E, Tran J, Xie L, Chen J, Ebenezer D et al (2015) Sphingosine-1-phosphate lyase is an endogenous suppressor of pulmonary fibrosis: role of S1P signalling and autophagy. Thorax 70(12):1138–1148. https://doi.org/10.1136/thoraxjnl-2014-206684
Hou L, Yang L, Chang N, Zhao X, Zhou X, Dong C et al (2020) Macrophage sphingosine 1-phosphate receptor 2 blockade attenuates liver inflammation and fibrogenesis triggered by NLRP3 inflammasome. Front Immunol 11:1149. https://doi.org/10.3389/fimmu.2020.01149
Article CAS PubMed PubMed Central Google Scholar
Konończuk T, Łukaszuk B, Żendzian-Piotrowska M, Dąbrowski A, Krzyżak M, Ostrowska L et al (2017) Plasma sphingolipids in acute pancreatitis. Int J Mol Sci. https://doi.org/10.3390/ijms18122606
Article PubMed PubMed Central Google Scholar
Yang J, Tang X, Li B, Shi J (2022) Sphingosine 1-phosphate receptor 2 mediated early stages of pancreatic and systemic inflammatory responses via NF-kappa B activation in acute pancreatitis. Cell Commun Signal 20(1):157. https://doi.org/10.1186/s12964-022-00971-8
Article CAS PubMed PubMed Central Google Scholar
Cui L, Li C, Zhang G, Zhang L, Yao G, Zhuo Y et al (2023) S1P/S1PR2 promote pancreatic stellate cell activation and pancreatic fibrosis in chronic pancreatitis by regulating autophagy and the NLRP3 inflammasome. Chem Biol Interact 380:110541. https://doi.org/10.1016/j.cbi.2023.110541
Article CAS PubMed Google Scholar
Wang D, Han S, Lv G, Hu Y, Zhuo W, Zeng Z et al (2023) Pancreatic acinar cells-derived sphingosine-1-phosphate contributes to fibrosis of chronic pancreatitis via inducing autophagy and activation of pancreatic stellate cells. Gastroenterology 165(6):1488-1504.e1420. https://doi.org/10.1053/j.gastro.2023.08.029
Article CAS PubMed Google Scholar
Chen F, Guo Y, Meng X, Zhang S (1995) Identification of chaihu guizhi ganjiang Decoction by three dimensional HPLC. Zhongguo Zhong Yao Za Zhi 20(4):223–224
Itoh T, Michijiri S, Murai S, Saito H, Saito H, Itsukaichi O et al (1996) Effects of chaihu-guizhi-ganjiang-tang on the levels of monoamines and their related substances, and acetylcholine in discrete brain regions of mice. Am J Chin Med 24(1):53–64. https://doi.org/10.1142/s0192415x96000086
Article CAS PubMed Google Scholar
Cui L, Li C, Shang Y, Li D, Zhuo Y, Yang L et al (2021) Chaihu Guizhi Ganjiang Decoction ameliorates pancreatic fibrosis via JNK/mTOR signaling pathway. Front Pharmacol 12:679557. https://doi.org/10.3389/fphar.2021.679557
Article CAS PubMed PubMed Central Google Scholar
Cui L-H, Li C-X, Zhuo Y-Z, Yang L, Cui N-Q, Zhang S-K (2019) Saikosaponin d ameliorates pancreatic fibrosis by inhibiting autophagy of pancreatic stellate cells via PI3K/Akt/mTOR pathway. Chemico-biological Interact 300:18–26
Dick TE, Hengst JA, Fox TE, Colledge AL, Kale VP, Sung SS et al (2015) The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharmacol Exp Ther 352(3):494–508. https://doi.org/10.1124/jpet.114.219659
Article CAS PubMed PubMed Central Google Scholar
Niina Y, Ito T, Oono T, Nakamura T, Fujimori N, Igarashi H et al (2014) A sustained prostacyclin analog, ONO-1301, attenuates pancreatic fibrosis in experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology 14(3):201–210. https://doi.org/10.1016/j.pan.2014.02.009
Comments (0)