Lederer David J, Martinez Fernando J (2018) Idiopathic pulmonary fibrosis. N Engl J Med 378(19):1811–1823
Article CAS PubMed Google Scholar
Radwanska A et al (2022) Increased expression and accumulation of GDF15 in IPF extracellular matrix contribute to fibrosis. JCI Insight. https://doi.org/10.1172/jci.insight.153058
Article PubMed PubMed Central Google Scholar
Bonella F, Spagnolo P, Ryerson C (2023) Current and future treatment landscape for idiopathic pulmonary fibrosis. Drugs 83(17):1581–1593
Article PubMed PubMed Central Google Scholar
Bae W et al (2022) Impact of smoking on the development of idiopathic pulmonary fibrosis: results from a nationwide population-based cohort study. Thorax 77(5):470
Rodríguez-Portal JA (2018) Efficacy and safety of nintedanib for the treatment of idiopathic pulmonary fibrosis: an update. Drugs R D 18(1):19–25
King TE Jr et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370(22):2083–2092
Tan S, Chen S (2021) The mechanism and effect of autophagy, apoptosis, and pyroptosis on the progression of silicosis. Int J Mol Sci. https://doi.org/10.3390/ijms22158110
Article PubMed PubMed Central Google Scholar
Zhang X et al (2023) Impaired autophagy-accelerated senescence of alveolar type II epithelial cells drives pulmonary fibrosis induced by single-walled carbon nanotubes. Journal of Nanobiotechnology 21(1):69
Article CAS PubMed PubMed Central Google Scholar
Ren C et al (2024) Toll-like receptor 9 aggravates pulmonary fibrosis by promoting NLRP3-mediated pyroptosis of alveolar epithelial cells. Inflammation 47(5):1744–1761
Article CAS PubMed Google Scholar
Song Z, Gong Q, Guo J (2021) Pyroptosis: mechanisms and links with fibrosis. Cells. https://doi.org/10.3390/cells10123509
Article PubMed PubMed Central Google Scholar
Sharma P et al (2021) Autophagy, apoptosis, the unfolded protein response, and lung function in idiopathic pulmonary fibrosis. Cells. https://doi.org/10.3390/cells10071642
Article PubMed PubMed Central Google Scholar
Wang S et al (2015) Autophagy and cell reprogramming. Cell Mol Life Sci 72(9):1699–1713
Article CAS PubMed PubMed Central Google Scholar
Wei Y et al (2023) Crystalline silica-induced macrophage pyroptosis interacting with mitophagy contributes to pulmonary fibrosis via modulating mitochondria homeostasis. J Hazard Mater 454:131562
Article CAS PubMed Google Scholar
Wei B et al (2024) Global research status and trends of interactions between traditional Chinese medicine and pulmonary fibrosis: a new dawn in treatment. Heliyon 10(14):e34592
Article CAS PubMed PubMed Central Google Scholar
Qi LW et al (2008) Simultaneous determination of 15 marker constituents in various radix Astragali preparations by solid-phase extraction and high-performance liquid chromatography. J Sep Sci 31(1):97–106
Article CAS PubMed Google Scholar
Geng F et al (2022) Quercetin alleviates pulmonary fibrosis in mice exposed to silica by inhibiting macrophage senescence. Front Pharmacol 13:912029
Article CAS PubMed PubMed Central Google Scholar
Zheng M et al (2024) Traditional Chinese medicine inspired dual-drugs loaded inhalable nano-therapeutics alleviated idiopathic pulmonary fibrosis by targeting early inflammation and late fibrosis. J Nanobiotechnology 22(1):14
Article CAS PubMed PubMed Central Google Scholar
Li Z et al (2024) The role of quercetin in ameliorating bleomycin-induced pulmonary fibrosis: insights into autophagy and the SIRT1/AMPK signaling pathway. Mol Biol Rep 51(1):795
Article CAS PubMed Google Scholar
Peng L et al (2020) Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial–mesenchymal transition and inflammation. Cell Death Dis 11(11):978
Article PubMed PubMed Central Google Scholar
Meng Y et al (2018) Autophagy attenuates angiotensin II-induced pulmonary fibrosis by inhibiting redox imbalance-mediated nod-like receptor family pyrin domain containing 3 inflammasome activation. Antioxid Redox Signal 30(4):520–541
Hill C et al (2019) Autophagy inhibition-mediated epithelial–mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis 10(8):591
Article PubMed PubMed Central Google Scholar
Li LC et al (2017) Astragaloside IV improves bleomycin-induced pulmonary fibrosis in rats by attenuating extracellular matrix deposition. Front Pharmacol 8:513
Article PubMed PubMed Central Google Scholar
Hou Y et al (2021) Astragaloside IV attenuates TGF-β-mediated epithelial-mesenchymal transition of pulmonary fibrosis via suppressing NLRP3 expression in vitro. Pharmazie 76(2):97–102
Saitoh T et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268
Article CAS PubMed Google Scholar
Guo R, Wang H, Cui N (2021) Autophagy regulation on pyroptosis: mechanism and medical implication in sepsis. Mediators Inflamm 2021:9925059
Article PubMed PubMed Central Google Scholar
Jiang C et al (2018) Acrolein induces NLRP3 inflammasome-mediated pyroptosis and suppresses migration via ROS-dependent autophagy in vascular endothelial cells. Toxicology 410:26–40
Article CAS PubMed Google Scholar
Zhao H et al (2022) The role of pyroptosis and autophagy in ischemia reperfusion injury. Biomolecules. https://doi.org/10.3390/biom12071010
Article PubMed PubMed Central Google Scholar
Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19(8):477–489
Article CAS PubMed PubMed Central Google Scholar
Salton F, Volpe MC, Confalonieri M (2019) Epithelial⁻mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina (Kaunas). https://doi.org/10.3390/medicina55040083
Comments (0)