Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol 4:1–12. https://doi.org/10.3389/fendo.2013.00037
Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77–82. https://doi.org/10.2337/diaclin.26.2.77
International Diabetes Federation (2021). IDF Diabetes Atlas, 10th ed. Brussels: 2021; 978-2-930229-98-0, online version at www.diabetesatlas.org (accessed 30.10.24).
Patel D, Kumar R, Laloo D, Hemalatha S (2012) Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed 2(5):411–420. https://doi.org/10.1016/s2221-1691(12)60067-7
Article CAS PubMed PubMed Central Google Scholar
Bindu J, Narendhirakannan RT (2019) Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech 9:4. https://doi.org/10.1007/s13205-018-1528-0
Aumeeruddy MZ, Mahomoodally MF (2021) Ethnomedicinal plants for the management of diabetes worldwide: a systematic review. Curr Med Chem 28(23):4670–4693. https://doi.org/10.2174/0929867328666210121123037
Article CAS PubMed Google Scholar
Vo VC (1997) Dictionary of Vietnamese medicinal plants. Medical Publisher, Ho Chi Minh
Nguyen KK, Do VH (2016) Taxonomic study on Pseuderanthemum Radlk (Acanthaceae) in flora of Vietnam. The 6th National scientific conference on ecology and biological resources, 193–199.
Pham HH (1999) An illustrated flora of Vietnam, vol 3. Youth Publisher, Ho Chi Minh
Duong TB, Du TA, Tri KN, Nguyen HP, Nguyen XL, Banh TH, Huynh NTD (2022) Hypoglycemic effect of leaf extract of Pseuderanthemum crenulatum leaves in an alloxan-induced diabetic mice. Vietnam J Sci Tech 64(2):21–24. https://doi.org/10.31276/VJST.64(2).21-24
Miyase T, Rüedi P, Eugster CH (1977) Diterpenoide Drüsenfarbstoffe aus labiaten: coleone U, V, W und 14-O-formyl-coleon-V sowie 2 royleanone aus Plectranthus myrianthus BRIQ.; cis- und trans-A/B-6, 7-dioxoroyleanon. Helvetica Chimica Acta 60:2770–2779. https://doi.org/10.1002/hlca.19770600830
Dewick MP (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. John Wiley & Sons, Chichester, UK
Pereira FBM, Domingues FMJ, Silva AMS (1996) Triterpenes from Acacia dealbata. Nat Prod Lett 8(2):97–103. https://doi.org/10.1080/10575639608043247
Barthel A, Stark S, Csuk R (2008) Oxidative transformations of betulinol. Tetrahedron 64(39):9225–9229. https://doi.org/10.1016/j.tet.2008.07.042
Suleimen EM, Van Hecke K (2016) Crystal structure and absolute configuration of 28-O-acetylbetulin. J Struct Chem 57:206–208. https://doi.org/10.1134/S0022476616010273
Ruberto G, Tringali C (2004) Secondary metabolites from the leaves of Feijoa sellowiana Berg. Phytochem 65(21):2947–2951. https://doi.org/10.1016/j.phytochem.2004.06.038
Alavi SHR, Yassa N, Shafiee A, Fouladi F (2008) A new furanocoumarin from Peucedanum ruthenicum. Pharm Biol 46(6):377–379. https://doi.org/10.1080/13880200802055800
Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2002) Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 50(13):3668–3672. https://doi.org/10.1021/jf025506a
Article CAS PubMed Google Scholar
Wichitnithad W, Nimmannit U, Wacharasindhu S, Rojsitthisak P (2011) Synthesis, characterization and biological evaluation of succinate prodrugs of curcuminoids for colon cancer treatment. Molecules 16(2):1888–1900. https://doi.org/10.3390/molecules16021888
Article CAS PubMed PubMed Central Google Scholar
Tinto WF, Blair LC, Alli A, Reynolds WF, McLean S (1992) Lupane triterpenoids of Salacia cordata. J Nat Prod 55(3):395–398. https://doi.org/10.1021/np50081a020
Luo Y, Liu Y, Qi H, Wu Z, Zhang G (2006) Steryl esters and phenylethanol esters from Syringa komarowii. Steroids 71(8):700–705. https://doi.org/10.1016/j.steroids.2006.04.004
Article CAS PubMed Google Scholar
Songue JL, Kouam Dongo E, Mpondo TN, White RL (2012) Chemical constituents from stem bark and roots of Clausena anisata. Molecules 17(11):13673–13686. https://doi.org/10.3390/molecules171113673
Article CAS PubMed PubMed Central Google Scholar
Olennikov DN, Gornostai TG, Penzina TA, Borovskii GB (2017) Lupane triterpenoids and sterols from Inonotus rheades Mycelium and their anti-glucosidase activity. Chem Nat Compd 53:988–990. https://doi.org/10.1007/s10600-017-2180-3
Raza R, Ilyas Z, Ali S, Nisar M, Khokhar MY, Iqbal J (2015) Identification of highly potent and selective α-glucosidase inhibitors with antiglycation potential, isolated from Rhododendron arboreum. Rec Nat Prod 9:262–266
Yu MH, Shi ZF, Yu BW, Pi EH, Wang HY, Hou AJ, Lei C (2014) Triterpenoids and α-glucosidase inhibitory constituents from Salacia hainanensis. Fitoterapia 98:143–148. https://doi.org/10.1016/j.fitote.2014.07.016
Article CAS PubMed Google Scholar
Srisurichan S, Pornpakakul S (2015) Triterpenoids from the seedpods of Holarrhena curtisii king and gamble. Phytochem Lett 12:282–286. https://doi.org/10.1016/j.phytol.2015.04.013
Nguyen TTM, Dang HP, Nguyen NT, Bui TTL, Nguyen XH, Le HT, Do VNT, Nguyen TN (2018) Paratrimerins G and H, two prenylated phenolic compounds from the stems of Paramignya trimera. Phytochem Lett 23:78–82. https://doi.org/10.1016/j.phytol.2017.11.014
Nguyen AT, Pham MQ, Nguyen PH, To DC, Dang NQ, Nguyen TH, Nguyen HT, Nguyen TD, Pham TKH, Tran MH (2025) Identification of natural curcumins as potential dual inhibitors of PTP1B and α-glucosidase through experimental and computational study. Kuwait J Sci 52(1):100312. https://doi.org/10.1016/j.kjs.2024.100312
Gao HY, Wu D, Lu C, Xu XM, Huang J, Sun BH, Wu LJ (2010) Constituents from the testas of Castanea mollissima Blume with α-glucosidase inhibitory activity. J Asian Nat Prod Res 12(2):144–149. https://doi.org/10.1080/10286020903451757
Article CAS PubMed Google Scholar
Yang Z, Wang Y, Wang Y, Zhang Y (2012) Bioassay-guided screening and isolation of α-glucosidase and tyrosinase inhibitors from leaves of Morus alba. Food Chem 131(2):617–625. https://doi.org/10.1016/j.foodchem.2011.09.040
Cherigo L, Martínez-Luis S (2019) Identification of major α-glucosidase inhibitors from stem bark of Panamanian mangrove plant Pelliciera rhizophorae. Nat Prod Commun 14(1):15–18. https://doi.org/10.1177/1934578X1901400105
Liu Y, Zhu J, Yu J, Chen X, Zhang S, Cai Y, Li L (2022) Curcumin as a mild natural α-glucosidase inhibitor: a study on its mechanism in vitro. Int J Food Sci Technol 57(5):2689–2700. https://doi.org/10.1111/ijfs.15433
Nampoothiri SV, Prathapan A, Cherian OL, Raghu KG, Venugopalan VV, Sundaresan A (2011) In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food Chem Toxicol 49(1):125–131. https://doi.org/10.1016/j.fct.2010.10.006
Comments (0)