Exploring anti-hyperglycemic potential of isolation, structural elucidation and -glucosidase inhibition evaluation

Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol 4:1–12. https://doi.org/10.3389/fendo.2013.00037

Article  Google Scholar 

Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77–82. https://doi.org/10.2337/diaclin.26.2.77

Article  Google Scholar 

International Diabetes Federation (2021). IDF Diabetes Atlas, 10th ed. Brussels: 2021; 978-2-930229-98-0, online version at www.diabetesatlas.org (accessed 30.10.24).

Patel D, Kumar R, Laloo D, Hemalatha S (2012) Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed 2(5):411–420. https://doi.org/10.1016/s2221-1691(12)60067-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bindu J, Narendhirakannan RT (2019) Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech 9:4. https://doi.org/10.1007/s13205-018-1528-0

Article  Google Scholar 

Aumeeruddy MZ, Mahomoodally MF (2021) Ethnomedicinal plants for the management of diabetes worldwide: a systematic review. Curr Med Chem 28(23):4670–4693. https://doi.org/10.2174/0929867328666210121123037

Article  CAS  PubMed  Google Scholar 

Vo VC (1997) Dictionary of Vietnamese medicinal plants. Medical Publisher, Ho Chi Minh

Google Scholar 

Nguyen KK, Do VH (2016) Taxonomic study on Pseuderanthemum Radlk (Acanthaceae) in flora of Vietnam. The 6th National scientific conference on ecology and biological resources, 193–199.

Pham HH (1999) An illustrated flora of Vietnam, vol 3. Youth Publisher, Ho Chi Minh

Google Scholar 

Duong TB, Du TA, Tri KN, Nguyen HP, Nguyen XL, Banh TH, Huynh NTD (2022) Hypoglycemic effect of leaf extract of Pseuderanthemum crenulatum leaves in an alloxan-induced diabetic mice. Vietnam J Sci Tech 64(2):21–24. https://doi.org/10.31276/VJST.64(2).21-24

Article  Google Scholar 

Miyase T, Rüedi P, Eugster CH (1977) Diterpenoide Drüsenfarbstoffe aus labiaten: coleone U, V, W und 14-O-formyl-coleon-V sowie 2 royleanone aus Plectranthus myrianthus BRIQ.; cis- und trans-A/B-6, 7-dioxoroyleanon. Helvetica Chimica Acta 60:2770–2779. https://doi.org/10.1002/hlca.19770600830

Article  CAS  Google Scholar 

Dewick MP (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. John Wiley & Sons, Chichester, UK

Book  Google Scholar 

Pereira FBM, Domingues FMJ, Silva AMS (1996) Triterpenes from Acacia dealbata. Nat Prod Lett 8(2):97–103. https://doi.org/10.1080/10575639608043247

Article  CAS  Google Scholar 

Barthel A, Stark S, Csuk R (2008) Oxidative transformations of betulinol. Tetrahedron 64(39):9225–9229. https://doi.org/10.1016/j.tet.2008.07.042

Article  CAS  Google Scholar 

Suleimen EM, Van Hecke K (2016) Crystal structure and absolute configuration of 28-O-acetylbetulin. J Struct Chem 57:206–208. https://doi.org/10.1134/S0022476616010273

Article  CAS  Google Scholar 

Ruberto G, Tringali C (2004) Secondary metabolites from the leaves of Feijoa sellowiana Berg. Phytochem 65(21):2947–2951. https://doi.org/10.1016/j.phytochem.2004.06.038

Article  CAS  Google Scholar 

Alavi SHR, Yassa N, Shafiee A, Fouladi F (2008) A new furanocoumarin from Peucedanum ruthenicum. Pharm Biol 46(6):377–379. https://doi.org/10.1080/13880200802055800

Article  CAS  Google Scholar 

Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2002) Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 50(13):3668–3672. https://doi.org/10.1021/jf025506a

Article  CAS  PubMed  Google Scholar 

Wichitnithad W, Nimmannit U, Wacharasindhu S, Rojsitthisak P (2011) Synthesis, characterization and biological evaluation of succinate prodrugs of curcuminoids for colon cancer treatment. Molecules 16(2):1888–1900. https://doi.org/10.3390/molecules16021888

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tinto WF, Blair LC, Alli A, Reynolds WF, McLean S (1992) Lupane triterpenoids of Salacia cordata. J Nat Prod 55(3):395–398. https://doi.org/10.1021/np50081a020

Article  CAS  Google Scholar 

Luo Y, Liu Y, Qi H, Wu Z, Zhang G (2006) Steryl esters and phenylethanol esters from Syringa komarowii. Steroids 71(8):700–705. https://doi.org/10.1016/j.steroids.2006.04.004

Article  CAS  PubMed  Google Scholar 

Songue JL, Kouam Dongo E, Mpondo TN, White RL (2012) Chemical constituents from stem bark and roots of Clausena anisata. Molecules 17(11):13673–13686. https://doi.org/10.3390/molecules171113673

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olennikov DN, Gornostai TG, Penzina TA, Borovskii GB (2017) Lupane triterpenoids and sterols from Inonotus rheades Mycelium and their anti-glucosidase activity. Chem Nat Compd 53:988–990. https://doi.org/10.1007/s10600-017-2180-3

Article  CAS  Google Scholar 

Raza R, Ilyas Z, Ali S, Nisar M, Khokhar MY, Iqbal J (2015) Identification of highly potent and selective α-glucosidase inhibitors with antiglycation potential, isolated from Rhododendron arboreum. Rec Nat Prod 9:262–266

Google Scholar 

Yu MH, Shi ZF, Yu BW, Pi EH, Wang HY, Hou AJ, Lei C (2014) Triterpenoids and α-glucosidase inhibitory constituents from Salacia hainanensis. Fitoterapia 98:143–148. https://doi.org/10.1016/j.fitote.2014.07.016

Article  CAS  PubMed  Google Scholar 

Srisurichan S, Pornpakakul S (2015) Triterpenoids from the seedpods of Holarrhena curtisii king and gamble. Phytochem Lett 12:282–286. https://doi.org/10.1016/j.phytol.2015.04.013

Article  CAS  Google Scholar 

Nguyen TTM, Dang HP, Nguyen NT, Bui TTL, Nguyen XH, Le HT, Do VNT, Nguyen TN (2018) Paratrimerins G and H, two prenylated phenolic compounds from the stems of Paramignya trimera. Phytochem Lett 23:78–82. https://doi.org/10.1016/j.phytol.2017.11.014

Article  CAS  Google Scholar 

Nguyen AT, Pham MQ, Nguyen PH, To DC, Dang NQ, Nguyen TH, Nguyen HT, Nguyen TD, Pham TKH, Tran MH (2025) Identification of natural curcumins as potential dual inhibitors of PTP1B and α-glucosidase through experimental and computational study. Kuwait J Sci 52(1):100312. https://doi.org/10.1016/j.kjs.2024.100312

Article  Google Scholar 

Gao HY, Wu D, Lu C, Xu XM, Huang J, Sun BH, Wu LJ (2010) Constituents from the testas of Castanea mollissima Blume with α-glucosidase inhibitory activity. J Asian Nat Prod Res 12(2):144–149. https://doi.org/10.1080/10286020903451757

Article  CAS  PubMed  Google Scholar 

Yang Z, Wang Y, Wang Y, Zhang Y (2012) Bioassay-guided screening and isolation of α-glucosidase and tyrosinase inhibitors from leaves of Morus alba. Food Chem 131(2):617–625. https://doi.org/10.1016/j.foodchem.2011.09.040

Article  CAS  Google Scholar 

Cherigo L, Martínez-Luis S (2019) Identification of major α-glucosidase inhibitors from stem bark of Panamanian mangrove plant Pelliciera rhizophorae. Nat Prod Commun 14(1):15–18. https://doi.org/10.1177/1934578X1901400105

Article  Google Scholar 

Liu Y, Zhu J, Yu J, Chen X, Zhang S, Cai Y, Li L (2022) Curcumin as a mild natural α-glucosidase inhibitor: a study on its mechanism in vitro. Int J Food Sci Technol 57(5):2689–2700. https://doi.org/10.1111/ijfs.15433

Article  CAS  Google Scholar 

Nampoothiri SV, Prathapan A, Cherian OL, Raghu KG, Venugopalan VV, Sundaresan A (2011) In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food Chem Toxicol 49(1):125–131. https://doi.org/10.1016/j.fct.2010.10.006

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif