Waksman SA, Woodruff HB (1940) Bacteriostatic and bactericidal substances produced by a soil actinomyces. Exp Biol Med 45:609–614. https://doi.org/10.3181/00379727-45-11768
Schatz A, Bugle E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Exp Biol Med 55:66–69. https://doi.org/10.3181/00379727-55-14461
Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. https://doi.org/10.1038/ja.2005.1
Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J (2018) Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol 67:259–272. https://doi.org/10.21307/pjm-2018-048
Article PubMed PubMed Central Google Scholar
Igarashi Y (2023) Development of a drug discovery approach from microbes with a special focus on isolation sources and taxonomy. J Antibiot 76:365–383. https://doi.org/10.1038/s41429-023-00625-y
Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220. https://doi.org/10.1073/pnas.211433198
Article CAS PubMed PubMed Central Google Scholar
Doroghazi JR, Albright JC, Goering AW, Ju KS, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10:963–968. https://doi.org/10.1038/nchembio.1659
Article CAS PubMed PubMed Central Google Scholar
Jorgensen TS, Mohite OS, Sterndorff EB, Alvarez-Arevalo M, Blin K, Booth TJ, Charusanti P, Faurdal D, Hansen TO, Nuhamunada M, Mourched AS, Palsson BO, Weber T (2024) A treasure trove of 1034 actinomycete genomes. Nucleic Acids Res 52:7487–7503. https://doi.org/10.1093/nar/gkae523
Article CAS PubMed PubMed Central Google Scholar
Kozakai R, Ono T, Hoshino S, Takahashi H, Katsuyama Y, Sugai Y, Ozaki T, Teramoto K, Teramoto K, Tanaka K, Abe I, Asamizu S, Onaka H (2020) Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nat Chem 12:869–877. https://doi.org/10.1038/s41557-020-0508-2
Article CAS PubMed Google Scholar
Nishimura T, Kudo K, Izumikawa M, Kozone I, Hashimoto J, Kagaya N, Suenaga H, Takeuchi K, Shin-Ya K (2024) Isolation and structure elucidation of JBIR-157, a skeletally novel aromatic polyketide produced by the heterologous expression of a cryptic gene cluster. Chem Pharm Bull 72:475–479. https://doi.org/10.1248/cpb.c24-00144
Xu F, Wu Y, Zhang C, Davis KM, Moon K, Bushin LB, Seyedsayamdost MR (2019) A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol 15:161–168. https://doi.org/10.1038/s41589-018-0193-2
Article CAS PubMed PubMed Central Google Scholar
Han EJ, Lee SR, Hoshino S, Seyedsayamdost MR (2022) Targeted discovery of cryptic metabolites with antiproliferative activity. ACS Chem Biol 17:3121–3130. https://doi.org/10.1021/acschembio.2c00588
Article CAS PubMed PubMed Central Google Scholar
Du D, Katsuyama Y, Onaka H, Fujie M, Satoh N, Shin-Ya K, Ohnishi Y (2016) Production of a novel amide-containing polyene by activating a cryptic biosynthetic gene cluster in Streptomyces sp. MSC090213JE08. ChemBioChem 17:1464–1471. https://doi.org/10.1002/cbic.201600167
Article CAS PubMed Google Scholar
Sanada M, Miyano T, Iwadare S, Williamson JM, Arison BH, Smith JL, Douglas AW, Liesch JM, Inamine E (1986) Biosynthesis of fluorothreonine and fluoroacetic acid by the thienamycin producer, Streptomyces cattleya. J Antibiot 39:259–265. https://doi.org/10.7164/antibiotics.39.259
Deng H, Ma L, Bandaranayaka N, Qin Z, Mann G, Kyeremeh K, Yu Y, Shepherd T, Naismith JH, O’Hagan D (2014) Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining. ChemBioChem 15:364–368. https://doi.org/10.1002/cbic.201300732
Article CAS PubMed Google Scholar
Zhu XM, Hackl S, Thaker MN, Kalan L, Weber C, Urgast DS, Krupp EM, Brewer A, Vanner S, Szawiola A, Yim G, Feldmann J, Bechthold A, Wright GD, Zechel DL (2015) Biosynthesis of the fluorinated natural product nucleocidin in Streptomyces calvus is dependent on the bldA-specified Leu-tRNAUUA molecule. ChemBioChem 16:2498–2506. https://doi.org/10.1002/cbic.201500402
Article CAS PubMed Google Scholar
Kayrouz CM, Huang J, Hauser N, Seyedsayamdost MR (2022) Biosynthesis of selenium-containing small molecules in diverse microorganisms. Nature 610:199–204. https://doi.org/10.1038/s41586-022-05174-2
Article CAS PubMed Google Scholar
Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446. https://doi.org/10.1021/np0102713
Article CAS PubMed Google Scholar
Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520. https://doi.org/10.1021/np060381f
Article CAS PubMed Google Scholar
Moussa M, Ebrahim W, Bonus M, Gohlke H, Mandi A, Kurtan T, Hartmann R, Kalscheuer R, Lin W, Liu Z, Proksch P (2019) Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Adv 9:1491–1500. https://doi.org/10.1039/c8ra09067j
Article CAS PubMed PubMed Central Google Scholar
Onaka H, Mori Y, Igarashi Y, Furumai T (2011) Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol 77:400–406. https://doi.org/10.1128/AEM.01337-10
Article CAS PubMed Google Scholar
Igarashi Y, Kim Y, In Y, Ishida T, Kan Y, Fujita T, Iwashita T, Tabata H, Onaka H, Furumai T (2010) Alchivemycin A, a bioactive polycyclic polyketide with an unprecedented skeleton from Streptomyces sp. Org Lett 12:3402–3405. https://doi.org/10.1021/ol1012982
Article CAS PubMed Google Scholar
Kim Y, In Y, Ishida T, Onaka H, Igarashi Y (2013) Biosynthetic origin of alchivemycin A, a new polyketide from Streptomyces and absolute configuration of alchivemycin B. Org Lett 15:3514–3517. https://doi.org/10.1021/ol401071j
Article CAS PubMed Google Scholar
Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390. https://doi.org/10.1007/s002030100345
Article CAS PubMed Google Scholar
Hoshino S, Zhang L, Awakawa T, Wakimoto T, Onaka H, Abe I (2015) Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. J Antibiot 68:342–344. https://doi.org/10.1038/ja.2014.147
Horton PA, Longley RE, McConnell OJ, Ballas LM (1994) Staurosporine aglycone (K252-c) and arcyriaflavin A from the marine ascidian, Eudistoma sp. Experientia 50:843–845. https://doi.org/10.1007/BF01956468
Article CAS PubMed Google Scholar
Kojiri K, Kondo H, Yoshinari T, Arakawa H, Nakajima S, Satoh F, Kawamura K, Okura A, Suda H, Okanishi M (1991) A new antitumor substance BE-13793C, produced by a streptomycete. Taxonomy, fermentation, isolation, structure determination and biological activity. J Antibiot 44:723–728. https://doi.org/10.7164/antibiotics.44.723
Comments (0)