Exploring new natural products by utilizing untapped secondary metabolic pathways in actinomycetes

Waksman SA, Woodruff HB (1940) Bacteriostatic and bactericidal substances produced by a soil actinomyces. Exp Biol Med 45:609–614. https://doi.org/10.3181/00379727-45-11768

Article  CAS  Google Scholar 

Schatz A, Bugle E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Exp Biol Med 55:66–69. https://doi.org/10.3181/00379727-55-14461

Article  CAS  Google Scholar 

Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. https://doi.org/10.1038/ja.2005.1

Article  Google Scholar 

Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J (2018) Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol 67:259–272. https://doi.org/10.21307/pjm-2018-048

Article  PubMed  PubMed Central  Google Scholar 

Igarashi Y (2023) Development of a drug discovery approach from microbes with a special focus on isolation sources and taxonomy. J Antibiot 76:365–383. https://doi.org/10.1038/s41429-023-00625-y

Article  CAS  Google Scholar 

Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220. https://doi.org/10.1073/pnas.211433198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doroghazi JR, Albright JC, Goering AW, Ju KS, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10:963–968. https://doi.org/10.1038/nchembio.1659

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jorgensen TS, Mohite OS, Sterndorff EB, Alvarez-Arevalo M, Blin K, Booth TJ, Charusanti P, Faurdal D, Hansen TO, Nuhamunada M, Mourched AS, Palsson BO, Weber T (2024) A treasure trove of 1034 actinomycete genomes. Nucleic Acids Res 52:7487–7503. https://doi.org/10.1093/nar/gkae523

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kozakai R, Ono T, Hoshino S, Takahashi H, Katsuyama Y, Sugai Y, Ozaki T, Teramoto K, Teramoto K, Tanaka K, Abe I, Asamizu S, Onaka H (2020) Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nat Chem 12:869–877. https://doi.org/10.1038/s41557-020-0508-2

Article  CAS  PubMed  Google Scholar 

Nishimura T, Kudo K, Izumikawa M, Kozone I, Hashimoto J, Kagaya N, Suenaga H, Takeuchi K, Shin-Ya K (2024) Isolation and structure elucidation of JBIR-157, a skeletally novel aromatic polyketide produced by the heterologous expression of a cryptic gene cluster. Chem Pharm Bull 72:475–479. https://doi.org/10.1248/cpb.c24-00144

Article  CAS  Google Scholar 

Xu F, Wu Y, Zhang C, Davis KM, Moon K, Bushin LB, Seyedsayamdost MR (2019) A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat Chem Biol 15:161–168. https://doi.org/10.1038/s41589-018-0193-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han EJ, Lee SR, Hoshino S, Seyedsayamdost MR (2022) Targeted discovery of cryptic metabolites with antiproliferative activity. ACS Chem Biol 17:3121–3130. https://doi.org/10.1021/acschembio.2c00588

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du D, Katsuyama Y, Onaka H, Fujie M, Satoh N, Shin-Ya K, Ohnishi Y (2016) Production of a novel amide-containing polyene by activating a cryptic biosynthetic gene cluster in Streptomyces sp. MSC090213JE08. ChemBioChem 17:1464–1471. https://doi.org/10.1002/cbic.201600167

Article  CAS  PubMed  Google Scholar 

Sanada M, Miyano T, Iwadare S, Williamson JM, Arison BH, Smith JL, Douglas AW, Liesch JM, Inamine E (1986) Biosynthesis of fluorothreonine and fluoroacetic acid by the thienamycin producer, Streptomyces cattleya. J Antibiot 39:259–265. https://doi.org/10.7164/antibiotics.39.259

Article  CAS  Google Scholar 

Deng H, Ma L, Bandaranayaka N, Qin Z, Mann G, Kyeremeh K, Yu Y, Shepherd T, Naismith JH, O’Hagan D (2014) Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining. ChemBioChem 15:364–368. https://doi.org/10.1002/cbic.201300732

Article  CAS  PubMed  Google Scholar 

Zhu XM, Hackl S, Thaker MN, Kalan L, Weber C, Urgast DS, Krupp EM, Brewer A, Vanner S, Szawiola A, Yim G, Feldmann J, Bechthold A, Wright GD, Zechel DL (2015) Biosynthesis of the fluorinated natural product nucleocidin in Streptomyces calvus is dependent on the bldA-specified Leu-tRNAUUA molecule. ChemBioChem 16:2498–2506. https://doi.org/10.1002/cbic.201500402

Article  CAS  PubMed  Google Scholar 

Kayrouz CM, Huang J, Hauser N, Seyedsayamdost MR (2022) Biosynthesis of selenium-containing small molecules in diverse microorganisms. Nature 610:199–204. https://doi.org/10.1038/s41586-022-05174-2

Article  CAS  PubMed  Google Scholar 

Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446. https://doi.org/10.1021/np0102713

Article  CAS  PubMed  Google Scholar 

Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520. https://doi.org/10.1021/np060381f

Article  CAS  PubMed  Google Scholar 

Moussa M, Ebrahim W, Bonus M, Gohlke H, Mandi A, Kurtan T, Hartmann R, Kalscheuer R, Lin W, Liu Z, Proksch P (2019) Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Adv 9:1491–1500. https://doi.org/10.1039/c8ra09067j

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onaka H, Mori Y, Igarashi Y, Furumai T (2011) Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol 77:400–406. https://doi.org/10.1128/AEM.01337-10

Article  CAS  PubMed  Google Scholar 

Igarashi Y, Kim Y, In Y, Ishida T, Kan Y, Fujita T, Iwashita T, Tabata H, Onaka H, Furumai T (2010) Alchivemycin A, a bioactive polycyclic polyketide with an unprecedented skeleton from Streptomyces sp. Org Lett 12:3402–3405. https://doi.org/10.1021/ol1012982

Article  CAS  PubMed  Google Scholar 

Kim Y, In Y, Ishida T, Onaka H, Igarashi Y (2013) Biosynthetic origin of alchivemycin A, a new polyketide from Streptomyces and absolute configuration of alchivemycin B. Org Lett 15:3514–3517. https://doi.org/10.1021/ol401071j

Article  CAS  PubMed  Google Scholar 

Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390. https://doi.org/10.1007/s002030100345

Article  CAS  PubMed  Google Scholar 

Hoshino S, Zhang L, Awakawa T, Wakimoto T, Onaka H, Abe I (2015) Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. J Antibiot 68:342–344. https://doi.org/10.1038/ja.2014.147

Article  CAS  Google Scholar 

Horton PA, Longley RE, McConnell OJ, Ballas LM (1994) Staurosporine aglycone (K252-c) and arcyriaflavin A from the marine ascidian, Eudistoma sp. Experientia 50:843–845. https://doi.org/10.1007/BF01956468

Article  CAS  PubMed  Google Scholar 

Kojiri K, Kondo H, Yoshinari T, Arakawa H, Nakajima S, Satoh F, Kawamura K, Okura A, Suda H, Okanishi M (1991) A new antitumor substance BE-13793C, produced by a streptomycete. Taxonomy, fermentation, isolation, structure determination and biological activity. J Antibiot 44:723–728. https://doi.org/10.7164/antibiotics.44.723

Article  CAS  Google Scholar 

Comments (0)

No login
gif