Investigation of the mechanism of Buyang Huanwu decoction in improving learning and memory impairment in Alzheimer's disease mice based on lipidomics

Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70. https://doi.org/10.1111/ene.13439

Article  CAS  PubMed  Google Scholar 

Van Bulck M, Sierra-Magro A, Alarcon-Gil J, Perez-Castillo A, Morales-Garcia JA (2019) Novel Approaches for the Treatment of Alzheimer’s and Parkinson’s Disease. Int J Mol Sci. https://doi.org/10.3390/ijms20030719

Article  PubMed  PubMed Central  Google Scholar 

Silva MVF, Loures CMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MDG (2019) Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci 26:33. https://doi.org/10.1186/s12929-019-0524-y

Article  PubMed  PubMed Central  Google Scholar 

Li HH, Lin CL, Huang CN (2018) Neuroprotective effects of statins against amyloid β-induced neurotoxicity. Neural Regen Res 13:198–206. https://doi.org/10.4103/1673-5374.226379

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kou J, Kovacs GG, Höftberger R, Kulik W, Brodde A, Forss-Petter S et al (2011) Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol 122:271–283. https://doi.org/10.1007/s00401-011-0836-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang T, Jiang X, Ruan Y, Zhuang J, Yin Y (2022) Based on network pharmacology and in vitro experiments to prove the effective inhibition of myocardial fibrosis by Buyang Huanwu decoction. Bioengineered 13:13767–13783. https://doi.org/10.1080/21655979.2022.2084253

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaw LH, Lin LC, Tsai TH (2012) HPLC-MS/MS analysis of a traditional Chinese medical formulation of Bu-Yang-Huan-Wu-Tang and its pharmacokinetics after oral administration to rats. PLoS ONE 7:e43848. https://doi.org/10.1371/journal.pone.0043848

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M, Zhao Q, Liu J, Huang A, Xia X (2022) Buyang Huanwu decoction affects gut microbiota and lipid metabolism in a ZDF rat model of co-morbid type 2 diabetes mellitus and obesity: an integrated metabolomics analysis. Front Chem 10:1036380. https://doi.org/10.3389/fchem.2022.1036380

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu X, Sun Z, Long Q, Tan W, Ding H, Liu X et al (2022) Glycosides from Buyang Huanwu Decoction inhibit atherosclerotic inflammation via JAK/STAT signaling pathway. Phytomedicine 105:154385. https://doi.org/10.1016/j.phymed.2022.154385

Article  CAS  PubMed  Google Scholar 

Liu B, Song Z, Yu J, Li P, Tang Y, Ge J (2020) The atherosclerosis-ameliorating effects and molecular mechanisms of BuYangHuanWu decoction. Biomed Pharmacother 123:109664. https://doi.org/10.1016/j.biopha.2019.109664

Article  CAS  PubMed  Google Scholar 

Ali J, Khan A, Park JS, Tahir M, Ahmad W, Choe K et al (2023) Neuroprotective effects of N-methyl-(2S, 4R)-trans-4-hydroxy-L-proline (NMP) against amyloid-β-induced alzheimer’s disease mouse model. Nutrients. https://doi.org/10.3390/nu15234986

Article  PubMed  PubMed Central  Google Scholar 

D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90. https://doi.org/10.1016/s0165-0173(01)00067-4

Article  CAS  PubMed  Google Scholar 

Dinel AL, Lucas C, Guillemet D, Layé S, Pallet V, Joffre C (2020) Chronic supplementation with a mix of salvia officinalis and salvia lavandulaefolia improves morris water maze learning in normal adult C57Bl/6J mice. Nutrients. https://doi.org/10.3390/nu12061777

Article  PubMed  PubMed Central  Google Scholar 

Qian X, Hai W, Chen S, Zhang M, Jiang X, Tang H (2023) Multi-omics data reveals aberrant gut microbiota-host glycerophospholipid metabolism in association with neuroinflammation in APP/PS1 mice. Gut Microbes 15:2282790. https://doi.org/10.1080/19490976.2023.2282790

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong F, Gong K, Xu H, Tu Y, Lu J, Zhou Y et al (2023) Optimized integration of metabolomics and lipidomics reveals brain region-specific changes of oxidative stress and neuroinflammation in type 1 diabetic mice with cognitive decline. J Adv Res 43:233–245. https://doi.org/10.1016/j.jare.2022.02.011. (Epub 2022 Feb 22)

Article  CAS  PubMed  Google Scholar 

Wang XL Research on abnormal lipid metabolism and potential biomarkers in AD based on non-targeted and targeted lipidomics techniques [PhD]2016.

Reitz C (2013) Dyslipidemia and the risk of Alzheimer’s disease. Curr Atheroscler Rep 15:307. https://doi.org/10.1007/s11883-012-0307-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guasch-Ferré M, Willett WC (2021) The Mediterranean diet and health: a comprehensive overview. J Intern Med 290:549–566. https://doi.org/10.1111/joim.13333

Article  PubMed  Google Scholar 

Xia P, Chen J, Liu Y, Cui X, Wang C, Zong S et al (2022) MicroRNA-22-3p ameliorates Alzheimer’s disease by targeting SOX9 through the NF-κB signaling pathway in the hippocampus. J Neuroinflammation 19:180. https://doi.org/10.1186/s12974-022-02548-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long QH, Wu YG, He LL, Ding L, Tan AH, Shi HY et al (2021) Suan-Zao-Ren Decoction ameliorates synaptic plasticity through inhibition of the Aβ deposition and JAK2/STAT3 signaling pathway in AD model of APP/PS1 transgenic mice. Chin Med 16:14. https://doi.org/10.1186/s13020-021-00425-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Xu L, Shen Y, Wang L, Lai X, Hu H (2024) Qingxin Kaiqiao Fang decreases Tau hyperphosphorylation in Alzheimer’s disease via the PI3K/Akt/GSK3β pathway in vitro and in vivo. J Ethnopharmacol 318:117031. https://doi.org/10.1016/j.jep.2023.117031

Article  CAS  PubMed  Google Scholar 

Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526. https://doi.org/10.1038/nmeth.3393

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS et al (2018) Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev 37:513–532. https://doi.org/10.1002/mas.21535

Article  CAS  PubMed  Google Scholar 

Hu C, Wang T, Zhuang X, Sun Q, Wang X, Lin H et al (2021) Metabolic analysis of early nonalcoholic fatty liver disease in humans using liquid chromatography-mass spectrometry. J Transl Med 19:152. https://doi.org/10.1186/s12967-021-02820-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia Z, Liu W, Zheng F, Huang W, Xing Z, Peng W et al (2020) VISSA-PLS-DA-based metabolomics reveals a multitargeted mechanism of traditional chinese medicine for traumatic brain injury. ASN Neuro 12:1759091420910957. https://doi.org/10.1177/1759091420910957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zarrouk A, Vejux A, Nury T, El Hajj HI, Haddad M, Cherkaoui-Malki M et al (2012) Induction of mitochondrial changes associated with oxidative stress on very long chain fatty acids (C22:0, C24:0, or C26:0)-treated human neuronal cells (SK-NB-E). Oxid Med Cell Longev 2012:623257. https://doi.org/10.1155/2012/623257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kosicek M, Hecimovic S (2013) Phospholipids and Alzheimer’s disease: alterations, mechanisms and potential biomarkers. Int J Mol Sci 14:1310–1322. https://doi.org/10.3390/ijms14011310

Article  CAS 

Comments (0)

No login
gif