Takaichi S (2020) Carotenoids in phototrophic microalgae: Distributions and biosynthesis. In: Jacob-Lopes E, Queiroz MI, Zepka LQ (eds) Pigments from microalgae handbook. Springer, New York
Hayashi S, Kawagoshi M, Hayashi Y, Manabe Y, Sugawara T (2018) Survey of carotenoids content in green algae. Trac Nutr Res 35:47–51
Maoka T, Fujiwara Y, Hashimoto K, Akimoto N (2005) Carotenoids in three species of corbicula clams, Corbicula japonica, Corbicula sandai, and Corbicula sp. (Chinese Freshwater Corbicula Clam). J Agric Food Chem 53:8357–8364. https://doi.org/10.1021/jf058088t
Article CAS PubMed Google Scholar
Sugawara T, Ganesan P, Li Z, Manabe Y, Hirata T (2014) Siphonaxanthin, a green algal carotenoid, as a novel functional compound. Mar Drugs 12:3660–3668. https://doi.org/10.3390/md12063660
Article CAS PubMed PubMed Central Google Scholar
Ganesan P, Noda K, Manabe Y, Ohkubo T, Tanaka Y, Maoka T, Sugawara T, Hirata T (2011) Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells. BBA Gen Subjects 1810:497–503. https://doi.org/10.1016/j.bbagen.2011.02.008
Manabe Y, Takii Y, Sugawara T (2020) Siphonaxanthin, a carotenoid from green algae, suppresses advanced glycation end product-induced inflammatory responses. J Nat Med 74:127–134. https://doi.org/10.1007/s11418-019-01354-z
Article CAS PubMed Google Scholar
Matsumoto M, Hosokawa M, Matsukawa N, Hagio M, Shinoki A, Nishimukai M, Miyashita K, Yajima T, Hara H (2010) Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats. Eur J Nutr 49:243–249. https://doi.org/10.1007/s00394-009-0078-y
Article CAS PubMed Google Scholar
Du X, Bai M, Huang Y, Jiang Z, Chen F, Ni H, Li Q (2018) Inhibitory effect of astaxanthin on pancreatic lipase with inhibition kinetics integrating molecular docking simulation. J Funct Foods 48:551–557. https://doi.org/10.1016/j.jff.2018.07.045
Shamarao N, Chethankumar M (2022) Antiobesity drug-likeness properties and pancreatic lipase inhibition of a novel low molecular weight lutein oxidized product, LOP6. Food Funct 13:6036–6055. https://doi.org/10.1039/D1FO04064B
Article CAS PubMed Google Scholar
Sheng L, Qian Z, Zheng S, Xi L (2006) Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol 543:116–122. https://doi.org/10.1016/j.ejphar.2006.05.038
Article CAS PubMed Google Scholar
Kawada T, Aoki N, Kamei Y, Maeshige K, Nishiu S, Sugimoto E (1990) Comparative investigation of vitamins and their analogues on terminal differentiation, from preadipocytes to adipocytes, of 3T3-L1 cells. Comp Biochem Physiol A Physiol 96:323–326. https://doi.org/10.1016/0300-9629(90)90699-S
Kawada T, Kamei Y, Fujita A, Hida Y, Takahashi N, Sugimoto E, Fushiki T (2000) Carotenoids and retinoids as suppressors on adipocyte differentiation via nuclear receptors. BioFactors 13:103–109. https://doi.org/10.1002/biof.5520130117
Article CAS PubMed Google Scholar
Hessel S, Eichinger A, Isken A, Amengual J, Hunzelmann S, Hoeller U, Elste V, Hunziker W, Goralczyk R, Oberhauser V, von Lintig J, Wyss A (2007) CMO1 deficiency abolishes vitamin A production from β-carotene and alters lipid metabolism in mice. J Biol Chem 282:33553–33561. https://doi.org/10.1074/jbc.M706763200
Article CAS PubMed Google Scholar
Lobo GP, Amengual J, Li HNM, Golczak M, Bonet ML, Palczewski K, von Lintig J (2010) β, β-Carotene decreases peroxisome proliferator receptor γ activity and reduces lipid storage capacity of adipocytes in a β, β-carotene oxygenase 1-dependent manner. J Biol Chem 285:27891–27899. https://doi.org/10.1074/jbc.M110.132571
Article CAS PubMed PubMed Central Google Scholar
delaSeña C, Narayanasamy S, Riedl KM, Curley RW Jr, Schwartz SJ, Harrison EH (2013) Substrate specificity of purified recombinant human β-carotene 15,15′-oxygenase (BCO1). J Biol Chem 288:37094–37103. https://doi.org/10.1074/jbc.M113.507160
Shirakura Y, Takayanagi K, Mukai K, Tanabe H, Inoue M (2011) β-Cryptoxanthin suppresses the adipogenesis of 3T3-L1 cells via RAR activation. J Nutr Sci Vitaminol 57:426–431. https://doi.org/10.3177/jnsv.57.426
Article CAS PubMed Google Scholar
Matsumoto A, Mizukami H, Mizuno S, Umegaki K, Nishikawa J, Shudo K, Kagechika H, Inoue M (2007) β-Cryptoxanthin, a novel natural RAR ligand, induces ATP-binding cassette transporters in macrophages. Biochem Pharmacol 74:256–264. https://doi.org/10.1016/j.bcp.2007.04.014
Article CAS PubMed Google Scholar
Hara H, Takahashi H, Mohri S, Murakami H, Kawarasaki S, Iwase M, Takahashi N, Sugiura M, Goto T, Kawada T (2019) β-Cryptoxanthin induces UCP-1 expression via a RAR pathway in adipose tissue. J Agric Food Chem 67:10595–10603. https://doi.org/10.1021/acs.jafc.9b01930
Article CAS PubMed Google Scholar
Ziouzenkova O, Orasanu G, Sukhova G, Lau E, Berger JP, Tang G, Krinsky NI, Dolnikowski GG, Plutzky J (2007) Asymmetric cleavage of β-carotene yields a transcriptional repressor of retinoid X receptor and peroxisome proliferator-activated receptor responses. Mol Endocrinol 21:77–88. https://doi.org/10.1210/me.2006-0225
Article CAS PubMed Google Scholar
Inoue M, Tanabe H, Matsumoto A, Takagi M, Umegaki K, Amagaya S, Takahashi J (2012) Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor γ modulator in adipocytes and macrophages. Biochem Pharmacol 84:692–700. https://doi.org/10.1016/j.bcp.2012.05.021
Article CAS PubMed Google Scholar
Takahashi N, Goto T, Taimatsu A, Egawa K, Katoh S, Kusudo T, Sakamoto T, Ohyane C, Lee JY, Kim Y, Uemura T, Hirai S, Kawada T (2009) Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARγ activation. Biochem Biophys Res Commun 390:1372–1376. https://doi.org/10.1016/j.bbrc.2009.10.162
Article CAS PubMed Google Scholar
Takahashi S, Waki N, Mohri S, Takahashi H, Ara T, Aizawa K, Suganuma H, Kawada T, Goto T (2018) Apo-12′-lycopenal, a lycopene metabolite, promotes adipocyte differentiation via peroxisome proliferator-activated receptor γ activation. J Agric Food Chem 66:13152–13161. https://doi.org/10.1021/acs.jafc.8b04736
Article CAS PubMed Google Scholar
Bajaj M, Suraamornkul S, Pratipanawatr T, Hardies LJ, Pratipanawatr W, Glass L, Cersosimo E, Miyazaki Y, DeFronzo RA (2003) Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes 52:1364–1370. https://doi.org/10.2337/diabetes.52.6.1364
Article CAS PubMed Google Scholar
Maeda H, Hosokawa M, Sashima T, Takahashi N, Kawada T, Miyashita K (2006) Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. Int J Mol Med 18:147–152. https://doi.org/10.3892/ijmm.18.1.147
Article CAS PubMed Google Scholar
Okada T, Nakai M, Maeda H, Hosokawa M, Sashima T, Miyashita K (2008) Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. J Oleo Sci 57:345–351. https://doi.org/10.5650/jos.57.345
Article CAS PubMed Google Scholar
Li ZS, Noda K, Fujita E, Manabe Y, Hirata T, Sugawara T (2015) The green algal carotenoid siphonaxanthin inhibits adipogenesis in 3T3-L1 preadipocytes and the accumulation of lipids in white adipose tissue of KK-Ay mice. J Nutr 145:490–498. https://doi.org/10.3945/jn.114.200931
Article CAS PubMed Google Scholar
Gopal SS, Eligar SM, Vallikannan B, Ponesakki G (2021) Inhibitory efficacy of lutein on adipogenesis is associated with blockage of early phase regulators of adipocyte differentiation. BBA Mol Cell Biol Lipids 1866:158812. https://doi.org/10.1016/j.bbalip.2020.158812
Yim MJ, Hosokawa M, Mizushina Y, Yoshida H, Saito Y, Miyashita K (2011) Suppressive effects of amarouciaxanthin A on 3T3-L1 adipocyte differentiation through down-regulation of PPARγ and C/EBPα mRNA expression. J Agric Food Chem 59:1646–1652. https://doi.org/10.1021/jf103290f
Comments (0)