Identification of specialized metabolites from as potent α-glucosidase and acetylcholinesterase inhibitors: enzyme kinetic, in vitro and in silico study

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th ed. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2019.107843

Article  PubMed  Google Scholar 

Zeng L, Ding H, Hu X, Zhang G, Gong D (2019) Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chem 271:70–79. https://doi.org/10.1016/j.foodchem.2018.07.148

Article  CAS  PubMed  Google Scholar 

Ríos JL, Francini F, Schinella GR (2015) Natural products for the treatment of type 2 diabetes mellitus. Planta Med 81:975–994. https://doi.org/10.1055/s-0035-1546131

Article  CAS  PubMed  Google Scholar 

Comas Herrera A, Prince M, Knapp M, Karagiannidou M, Guerchet M (2016) World alzheimer report 2016: improving healthcare for people with dementia. Cover Qual Costs Now Future. https://doi.org/10.13140/RG.2.2.22580.04483

Article  Google Scholar 

Perry EK (1986) The cholinergic hypothesis—ten years on. Br Med Bull 42:63–69. https://doi.org/10.1093/oxfordjournals.bmb.a072100

Article  CAS  PubMed  Google Scholar 

López S, Bastida J, Viladomat F, Codina C (2002) Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci 71:2521–2529. https://doi.org/10.1016/s0024-3205(02)02034-9

Article  PubMed  Google Scholar 

Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Sci 217:408–414. https://doi.org/10.1126/science.7046051

Article  CAS  Google Scholar 

Jagtap UB, Bapat VA (2010) Artocarpus: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 129:142–166. https://doi.org/10.1016/j.jep.2010.03.031

Article  CAS  PubMed  Google Scholar 

Fernando MR, Wickramasinghe SMDN, Thabrew MI, Ariyananda PL, Karunanayake EH (1991) Effect of Artocarpus heterophyllus and Asteracanthus longifolia on glucose tolerance in normal human subjects and in maturity-onset diabetic patients. J Ethnopharmacol 31:277–282. https://doi.org/10.1016/0378-8741(91)90012-3

Article  CAS  PubMed  Google Scholar 

Ghosh Tarafdar R, Nath S, Das Talukdar A, Dutta Choudhury M (2015) Antidiabetic plants used among the ethnic communities of Unakoti district of Tripura, India. J Ethnopharmacol 160:219–226. https://doi.org/10.1016/j.jep.2014.11.019

Article  PubMed  Google Scholar 

Wongon M, Limpeanchob N (2020) Inhibitory effect of Artocarpus lakoocha Roxb and oxyresveratrol on α-glucosidase and sugar digestion in caco-2 cells. Heliyon 6:e03458. https://doi.org/10.1016/j.heliyon.2020.e03458

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pande A, Mundkur L, Pande A, Bani S, Majeed M (2021) Antiglycation potential of commercial available extracts of two Indian medicinal plants: Pterocarpus marsupium and Artocarpus lakoocha using advanced glycation end products (AGE) competitive fluorescence assay. Cogent Food Agric 7:1914907. https://doi.org/10.1080/23311932.2021.1914907

Article  CAS  Google Scholar 

Namdaung U, Athipornchai A, Khammee T, Kuno M, Suksamrarn S (2018) 2-Arylbenzofurans from Artocarpus lakoocha and methyl ether analogs with potent cholinesterase inhibitory activity. Eur J Med Chem 143:1301–1311. https://doi.org/10.1016/j.ejmech.2017.10.019

Article  CAS  PubMed  Google Scholar 

Zerega N, Muhammad Noor NS, Motley T (2010) Phylogeny and recircumscription of Artocarpeae (Moraceae) with a focus on Artocarpus. Syst Bot 35:766–782. https://doi.org/10.2307/40985554

Article  Google Scholar 

Aneklaphakij C, Bunsupa S, Sirichamorn Y, Bongcheewin B, Satitpatipan V (2020) Taxonomic notes on the ‘Mahat’ (Artocarpus lacucha and A. thailandicus, Moraceae) species complex in Thailand. Plants 9:391. https://doi.org/10.3390/plants9030391

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saowakon N, Soonklang N, Wanichanon C, Sobhon P (2019) The anthelmintic effects of Artocarpus lakoocha stem extract on Fasciola gigantica. Planta Med 85:1429–1429. https://doi.org/10.1055/s-0039-3399743

Article  Google Scholar 

Puntumchai A, Kittakoop P, Rajviroongit S, Vimuttipong S, Likhitwitayawuid K, Thebtaranonth Y (2004) Lakoochins A and B, new antimycobacterial stilbene derivatives from Artocarpus lakoocha. J Nat Prod 67:485–486. https://doi.org/10.1021/np030429e

Article  CAS  PubMed  Google Scholar 

Sritularak B, Tan K, Likhitwitayawuid K, Lipipun V (2010) New 2-arylbenzofurans from the root bark of Artocarpus lakoocha. Molecules 15:6548–6558. https://doi.org/10.3390/molecules15096548

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maneechai S, De-Eknamkul W, Umehara K, Noguchi H, Likhitwitayawuid K (2012) Flavonoid and stilbenoid production in callus cultures of Artocarpus lakoocha. Phytochemistry 81:42–49. https://doi.org/10.1016/j.phytochem.2012.05.031

Article  CAS  PubMed  Google Scholar 

Sritularak B, Tantrakarnsakul K, Lipipun V, Likhitwitayawuid K (2013) Flavonoids with anti-HSV activity from the root bark of Artocarpus lakoocha. Nat Prod Commun. https://doi.org/10.1177/1934578X1300800811

Article  PubMed  Google Scholar 

Boonyaketgoson S, Rukachaisirikul V, Phongpaichit S, Trisuwan K (2019) Deoxybenzoin and flavan derivatives from the twigs of Artocarpus lakoocha. Phytochem Lett 31:96–100. https://doi.org/10.1016/j.phytol.2019.03.020

Article  CAS  Google Scholar 

Songoen W, Wenisch D, Jakupec MA, Phanchai W, Sukkhaeng S, Brecker L, Pluempanupat W (2024) Flavan-benzofurans from Artocarpus lacucha: their intracellular antioxidant activity and molecular docking to glutathione reductase. ACS Omega 9:33888–33899. https://doi.org/10.1021/acsomega.4c03865

Article  CAS  PubMed  PubMed Central  Google Scholar 

Songoen W, Phanchai W, Brecker L, Wenisch D, Jakupec MA, Pluempanupat W, Schinnerl J (2021) Highly aromatic flavan-3-ol derivatives from palaeotropical Artocarpus lacucha Buch.-Ham possess radical scavenging and antiproliferative properties. Molecules 26:1078. https://doi.org/10.3390/molecules26041078

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ranilla LG, Kwon YI, Apostolidis E, Shetty K (2010) Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour Technol 101:4676–4689. https://doi.org/10.1016/j.biortech.2010.01.093

Article  CAS  PubMed  Google Scholar 

Yoshino M, Murakami K (2009) A graphical method for determining inhibition constants. J Enzyme Inhib Med Chem 24:1288–1290. https://doi.org/10.1042/bj2480815

Article  CAS  PubMed  Google Scholar 

Yoshino M (1987) A graphical method for determining inhibition parameters for partial and complete inhibitors. Biochem J 248:815–820. https://doi.org/10.3109/14756360902829766

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Article  CAS  PubMed  Google Scholar 

CLSI, M100 (2019) Performance standards for antimicrobial susceptibility testing, 29th edn. Clinical and Laboratory Standards Institute, Wayne

Google Scholar 

Showalter SA, Brüschweiler R (2007) Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: application to the AMBER99SB force field. J Chem Theory Comput 3:961–975. https://doi.org/10.1021/ct7000045

Article  CAS  PubMed 

Comments (0)

No login
gif