Oleanane-type triterpene saponins promote extracellular vesicle secretion of human adipose-derived mesenchymal stem cells

Chen X, Yang F (2024) Classification and Nomenclature of Extracellular Vesicles. In: Extracellular Vesicles. Springer, Singapore, pp 3–7. https://doi.org/10.1007/978-981-99-8365-0_1

Dixson AC, Dawson TR, Di Vizio D, Weaver AM (2023) Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 24:454–476. https://doi.org/10.1038/s41580-023-00576-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnstone RM, Mathew A, Mason AB, Teng K (1991) Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol 147:27–36. https://doi.org/10.1002/jcp.1041470105

Article  CAS  PubMed  Google Scholar 

Mohammadipoor A, Hershfield MR, Linsenbardt HR, Smith J, Mack J, Natesan S, Averitt DL, Stark TR, Sosanya NM (2023) Biological function of extracellular vesicles (EVs): a review of the field. Mol Biol Rep 50:8639–8651. https://doi.org/10.1007/s11033-023-08624-w

Article  CAS  PubMed  Google Scholar 

Keklikoglou I, Cianciaruso C, Güç E, Squadrito ML, Spring LM, Tazzyman S, Lambein L, Poissonnier A, Ferraro GB, Baer C, Cassará A, Guichard A, Iruela-Arispe ML, Lewis CE, Coussens LM, Bardia A, Jain RK, Pollard JW, De Palma M (2019) Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol 21:190–202. https://doi.org/10.1038/s41556-018-0256-3

Article  CAS  PubMed  Google Scholar 

Sneider A, Liu Y, Starich B, Du W, Nair PR, Marar C, Faqih N, Ciotti GE, Kim J, Krishnan S, Ibrahim S, Igboko M, Locke A, Lewis DM, Hong H, Karl MN, Vij R, Russo GC, Gómez-De-Mariscal E, Habibi M, Muñoz-Barrutia A, Gu L, Eisinger-Mathason TSK, Wirtz D (2024) Small extracellular vesicles promote stiffness-mediated metastasis. Cancer Res Commun 4:1240–1252. https://doi.org/10.1158/2767-9764.CRC-23-0431

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim H, Lee M, Bae E, Ryu J, Kaur G, Kim H, Kim J, Barreda H, Jung S, Choi J, Shigemoto-Kuroda T, Oh J, Lee R (2020) Comprehensive molecular profiles of functionally effective MSC-derived extracellular vesicles in immunomodulation. Mol Ther 28:1628–1644. https://doi.org/10.1016/j.ymthe.2020.04.020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kilpinen L, Impola U, Sankkila L, Ritamo I, Aatonen M, Kilpinen S, Tuimala J, Valmu L, Levijoki J, Finckenberg P, Siljander P, Kankuri E, Mervaala E, Laitinen S (2013) Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J Extracell Vesicles 2:21927. https://doi.org/10.3402/jev.v2i0.21927

Article  CAS  Google Scholar 

Yuan S, Li G, Zhang J, Chen X, Su J, Zhou F (2023) Mesenchymal stromal cells-derived extracellular vesicles as potential treatments for osteoarthritis. Pharmaceutics 15:1814. https://doi.org/10.3390/pharmaceutics15071814

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teixeira AF, Wang Y, Iaria J, ten Dijke P, Zhu H (2023) Simultaneously targeting extracellular vesicle trafficking and TGF-β receptor kinase activity blocks signaling hyperactivation and metastasis. Signal Transduct Target Ther 8:1–18. https://doi.org/10.1038/s41392-023-01711-1

Article  CAS  Google Scholar 

O’Brien K, Breyne K, Ughetto S, Laurent L, Breakefield XO (2020) RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 21:585–606. https://doi.org/10.1038/s41580-020-0251-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herrmann IK, Wood MJA, Fuhrmann G (2021) Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 16:748–759. https://doi.org/10.1038/s41565-021-00931-2

Article  CAS  PubMed  Google Scholar 

Siraj Y, Galderisi U, Alessio N (2023) Senescence induces fundamental changes in the secretome of mesenchymal stromal cells (MSCs): implications for the therapeutic use of MSCs and their derivates. Front Bioeng Biotechnol 11:1148761. https://doi.org/10.3389/fbioe.2023.1148761

Article  PubMed  PubMed Central  Google Scholar 

Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo ABH, Padmanabhan J, Lee C, de Kleijn DPV, Lim SK (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9:1–10. https://doi.org/10.1186/1479-5876-9-47

Article  CAS  Google Scholar 

Wang CZ, Anderson S, He T, Yuan C (2016) Red ginseng and cancer treatment. Chin J Nat Med 14:7–16. https://doi.org/10.3724/SP.J.1009.2016.00007

Article  CAS  PubMed  Google Scholar 

Park H, Kim D, Park S, Kim J, Ryu J (2012) Ginseng in traditional herbal prescriptions. J Ginseng Res 36:225–241. https://doi.org/10.5142/jgr.2012.36.3.225

Article  PubMed  PubMed Central  Google Scholar 

Lee J, Park K, Cho I (2019) Panax ginseng: a candidate herbal medicine for autoimmune disease. J Ginseng Res 43:342–348. https://doi.org/10.1016/J.JGR.2018.10.002

Article  PubMed  Google Scholar 

Rai D, Bhatia G, Sen T, Palit G (2003) Anti-stress effects of Ginkgo biloba and Panax ginseng: a comparative study. J Pharmacol Sci 93:458–464. https://doi.org/10.1254/jphs.93.458

Article  CAS  PubMed  Google Scholar 

Yi YS (2021) New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. J Ethnopharmacol 278:114292. https://doi.org/10.1016/j.jep.2021.114292

Article  CAS  PubMed  Google Scholar 

Lee D, Park C, Lee S, Park H, Kim S, Son S, Park J, Shin K (2019) Anti-cancer effects of panax ginseng berry polysaccharides via activation of immune-related cells. Front pharmacol 10:1411. https://doi.org/10.3389/fphar.2019.01411

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshizaki K, Devkota HP, Fujino H, Yahara S (2013) Saponins composition of rhizomes, taproots, and lateral roots of satsuma-ninjin (panax japonicus). Chem Pharm Bull (Tokyo) 61:344–350. https://doi.org/10.1248/cpb.c12-00764

Article  CAS  PubMed  Google Scholar 

Kondo N, Shoji J, Nagumo N, Komatsu N (1969) Studies on the constituents of Panacis japonici rhizoma. II. The structure of chikusetsusaponin IV and some observations on the structural relationship with araloside A. Yakugaku Zasshi 89:846–850. https://doi.org/10.1248/yakushi1947.89.6_846

Article  CAS  PubMed  Google Scholar 

Kohda H, Tanaka S, Yamaoka Y, Izumi H, Nuno M, Isoda S, Katsumi K, Watanabe T, Katsuki S, Satake M (1991) Chikusetsusaponin: VI: a new Saponin from the Rhizome of Panax pseudo-ginseng var: angustatus hara. Chem Pharm Bull (Tokyo) 39:1588–1590. https://doi.org/10.1248/cpb.39.1588

Article  CAS  Google Scholar 

Kondo N, Marumoto Y, Shoji J (1971) Studies on the Constituents of Panacis Japonici Rhizoma: IV: the structure of Chikusetsusaponin V. Chem Pharm Bull (Tokyo) 19:1103–1107. https://doi.org/10.1248/cpb.19.1103

Article  CAS  Google Scholar 

Hikita T, Miyata M, Watanabe R, Oneyama C (2018) Sensitive and rapid quantification of exosomes by fusing luciferase to exosome marker proteins. Sci Rep 8:14035. https://doi.org/10.1038/s41598-018-32535-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piao X, Zhang H, Kang J, Yang D, Li Y, Pang S, Jin Y, Yang D, Wang Y (2020) Advances in saponin diversity of panax ginseng. Molecules 25:3452. https://doi.org/10.3390/molecules25153452

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Berkowicz A, King K, Menta B, Gabrielli AP, Novikova L, Troutwine B, Pleen J, Wilkins HM, Swerdlow HR (2022) Pharmacologic enrichment of exosome yields and mitochondrial cargo. Mitochondrion 64:136–144. https://doi.org/10.1016/j.mito.2022.04.001

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif