Snipelisky D, Chaudhry SP, Stewart GC (2019) The many faces of heart failure. Card Electrophysiol Clin 11(1):11–20. https://doi.org/10.1016/j.ccep.2018.11.001
Baman JR, Ahmad FS (2020) Heart failure. JAMA 324(10):1015. https://doi.org/10.1001/jama.2020.13310
Wilcox JE, Fang JC, Margulies KB, Mann DL (2020) Heart failure with recovered left ventricular ejection fraction: JACC scientific expert panel. J Am Coll Cardiol 76(6):719–734. https://doi.org/10.1016/j.jacc.2020.05.075
Ma W, Wang KJ, Cheng CS, Yan GQ, Lu WL, Ge JF, Cheng YX, Li N (2014) Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. J Ethnopharmacol 153(3):840–845. https://doi.org/10.1016/j.jep.2014.03.051
Article CAS PubMed Google Scholar
Chen Y, Chen J, Jiang M, Fu Y, Zhu Y, Jiao N, Liu L, Du Q, Wu H, Xu H, Sun J (2020) Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling. Life Sci 252:117653. https://doi.org/10.1016/j.lfs.2020.117653
Article CAS PubMed Google Scholar
Chu LW, Cheng KI, Chen JY, Cheng YC, Chang YC, Yeh JL, Hsu JH, Dai ZK, Wu BN (2020) Loganin prevents chronic constriction injury-provoked neuropathic pain by reducing TNF-α/IL-1β-mediated NF-κB activation and Schwann cell demyelination. Phytomedicine 67:153166. https://doi.org/10.1016/j.phymed.2019.153166
Article CAS PubMed Google Scholar
Kim MJ, Bae GS, Jo IJ, Choi SB, Kim DG, Shin JY, Lee SK, Kim MJ, Shin S, Song HJ, Park SJ (2015) Loganin protects against pancreatitis by inhibiting NF-κB activation. Eur J Pharmacol 765:541–550. https://doi.org/10.1016/j.ejphar.2015.09.019
Article CAS PubMed Google Scholar
Jang JH, Yang G, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY (2023) Loganin prevents hepatic steatosis by blocking NLRP3 inflammasome activation. Biomol Ther (Seoul) 31(1):40–47. https://doi.org/10.4062/biomolther.2022.077
Article CAS PubMed Google Scholar
Xu JJ, Li RJ, Zhang ZH, Yang C, Liu SX, Li YL, Chen MW, Wang WW, Zhang GY, Song G, Huang ZR (2021) Loganin inhibits angiotensin II-induced cardiac hypertrophy through the JAK2/STAT3 and NF-κB signaling pathways. Front Pharmacol 12:678886. https://doi.org/10.3389/fphar.2021.678886
Article CAS PubMed PubMed Central Google Scholar
Xia B, Ding J, Li Q, Zheng K, Wu J, Huang C, Liu K, You Q, Yuan X (2024) Loganin protects against myocardial ischemia-reperfusion injury by modulating oxidative stress and cellular apoptosis via activation of JAK2/STAT3 signaling. Int J Cardiol 395:131426. https://doi.org/10.1016/j.ijcard.2023.131426
Qin Q, Qu C, Niu T, Zang H, Qi L, Lyu L, Wang X, Nagarkatti M, Nagarkatti P, Janicki JS, Wang XL, Cui T (2016) Nrf2-mediated cardiac maladaptive remodeling and dysfunction in a setting of autophagy insufficiency. Hypertension 67(1):107–117. https://doi.org/10.1161/hypertensionaha.115.06062
Article CAS PubMed Google Scholar
Qi L, Zang H, Wu W, Nagarkatti P, Nagarkatti M, Liu Q, Robbins J, Wang X, Cui T (2020) CYLD exaggerates pressure overload-induced cardiomyopathy via suppressing autolysosome efflux in cardiomyocytes. J Mol Cell Cardiol 145:59–73. https://doi.org/10.1016/j.yjmcc.2020.06.004
Article CAS PubMed PubMed Central Google Scholar
Clemente-Moragón A, Gómez M, Villena-Gutiérrez R, Lalama DV, García-Prieto J, Martínez F, Sánchez-Cabo F, Fuster V, Oliver E, Ibáñez B (2020) Metoprolol exerts a non-class effect against ischaemia-reperfusion injury by abrogating exacerbated inflammation. Eur Heart J 41(46):4425–4440. https://doi.org/10.1093/eurheartj/ehaa733
Article CAS PubMed PubMed Central Google Scholar
Ranek MJ, Zheng H, Huang W, Kumarapeli AR, Li J, Liu J, Wang X Genetically induced moderate inhibition of 20S proteasomes in cardiomyocytes facilitates heart failure in mice during systolic overload. (1095–8584 (Electronic))
Hampton C, Rosa R, Campbell B, Kennan R, Gichuru L, Ping X, Shen X, Small K, Madwed J, Lynch JJ Early echocardiographic predictors of outcomes in the mouse transverse aortic constriction heart failure model. (1873–488X (Electronic)).
Branco AF, Pereira SP, Gonzalez S, Gusev O, Rizvanov AA, Oliveira PJ (2015) Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS ONE 10(6):e0129303. https://doi.org/10.1371/journal.pone.0129303
Article CAS PubMed PubMed Central Google Scholar
Ménard C, Pupier S, Mornet D, Kitzmann M, Nargeot J, Lory P (1999) Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. J Biol Chem 274(41):29063–29070. https://doi.org/10.1074/jbc.274.41.29063
Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS (2023) Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res 118(17):3272–3287. https://doi.org/10.1093/cvr/cvac013
Article CAS PubMed Google Scholar
Emmons-Bell S, Johnson C, Roth G (2022) Prevalence, incidence and survival of heart failure: a systematic review. Heart 108(17):1351–1360. https://doi.org/10.1136/heartjnl-2021-320131
Roger VL (2021) Epidemiology of heart failure: a contemporary perspective. Circ Res 128(10):1421–1434. https://doi.org/10.1161/circresaha.121.318172
Article CAS PubMed Google Scholar
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR (2023) The microenvironment of the pathogenesis of cardiac hypertrophy. Cells. https://doi.org/10.3390/cells12131780
Article PubMed PubMed Central Google Scholar
Choi N, Yang G, Jang JH, Kang HC, Cho YY, Lee HS, Lee JY (2021) Loganin alleviates gout inflammation by suppressing NLRP3 inflammasome activation and mitochondrial damage. Molecules. https://doi.org/10.3390/molecules26041071
Article PubMed PubMed Central Google Scholar
Wan H, Li C, Yang Y, Chen D (2022) Loganin attenuates interleukin-1β-induced chondrocyte inflammation, cartilage degeneration, and rat synovial inflammation by regulating TLR4/MyD88/NF-κB. J Int Med Res 50(8):3000605221104764. https://doi.org/10.1177/03000605221104764
Article CAS PubMed Google Scholar
Cheng KI, Chang YC, Chu LW, Hsieh SL, An LM, Dai ZK, Wu BN (2022) The iridoid glycoside loganin modulates autophagic flux following chronic constriction injury-induced neuropathic pain. Int J Mol Sci. https://doi.org/10.3390/ijms232415873
Article PubMed PubMed Central Google Scholar
Li W, Fan P, Wang X, Tang H (2023) Loganin alleviates myocardial ischemia-reperfusion injury through GLP-1R/NLRP3-mediated pyroptosis pathway. Environ Toxicol 38(11):2730–2740. https://doi.org/10.1002/tox.23908
Article CAS PubMed Google Scholar
El Jamal N, Lordan R, Teegarden SL, Grosser T, FitzGerald G (2023) The circadian biology of heart failure. Circ Res 132(2):223–237. https://doi.org/10.1161/circresaha.122.321369
Article PubMed PubMed Central Google Scholar
La Franca E, Manno G, Ajello L, Di Gesaro G, Minà C, Visconti C, Bellavia D, Falletta C, Romano G, Dell’ Oglio S, Licata P, Caronia A, Gallo M, Clemenza F (2021) Physiopathology and diagnosis of congestive heart failure: consolidated certainties and new perspectives. Curr Probl Cardiol 46(3):100691. https://doi.org/10.1016/j.cpcardiol.2020.100691
Li Z, Xia H, Sharp TE 3rd, LaPenna KB, Katsouda A, Elrod JW, Pfeilschifter J, Beck KF, Xu S, Xian M, Goodchild TT, Papapetropoulos A, Lefer DJ (2023) Hydrogen sulfide modulates endothelial-mesenchymal transition in heart failure. Circ Res 132(2):154–166. https://doi.org/10.1161/circresaha.122.321326
Article CAS PubMed Google Scholar
Gorelova A, Berman M, Al Ghouleh I (2021) Endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Antioxid Redox Signal 34(12):891–914. https://doi.org/10.1089/ars.2020.8169
Comments (0)