Ginsenoside Rh3-induced neurotoxicity involving the IP3R-Ca/NOX2/NF-κB signaling pathways

Mancuso C, Santangelo R (2017) Panax ginseng and Panax quinquefolius : from pharmacology to toxicology. Food Chem Toxicol 107:362–372. https://doi.org/10.1016/j.fct.2017.07.019

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ran X, Dou D, Chen H, Ren G (2022) The correlations of adverse effect and tonifying effect of ginseng medicines. J Ethnopharmacol 291:115113. https://doi.org/10.1016/j.jep.2022.115113

Article  PubMed  CAS  Google Scholar 

Goodwin PH, Best MA (2023) Ginsenosides and biotic stress responses of ginseng. Plants (Basel) 12:1091. https://doi.org/10.3390/plants12051091

Article  PubMed  CAS  Google Scholar 

He B, Chen D, Zhang X et al (2022) Oxidative stress and ginsenosides: an update on the molecular mechanisms. Oxid Med Cell Longev 2022:9299574. https://doi.org/10.1155/2022/9299574

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sarhene M, Ni JY, Duncan ES et al (2021) Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action. Pharmacol Res 166:105481. https://doi.org/10.1016/j.phrs.2021.105481

Article  PubMed  CAS  Google Scholar 

Shah MA, Abuzar SM, Ilyas K et al (2023) Ginsenosides in cancer: targeting cell cycle arrest and apoptosis. Chem Biol Interact 382:110634. https://doi.org/10.1016/j.cbi.2023.110634

Article  PubMed  CAS  Google Scholar 

Wang C, Pang X, Zhu T et al (2022) Rapid discovery of potential ADR compounds from injection of total saponins from Panax notoginseng using data-independent acquisition untargeted metabolomics. Anal Bioanal Chem 414:1081–1093. https://doi.org/10.1007/s00216-021-03734-5

Article  PubMed  CAS  Google Scholar 

Cong Z, Zhao Q, Yang B et al (2020) Ginsenoside Rh3 inhibits proliferation and induces apoptosis of colorectal cancer cells. Pharmacology 105:329–338. https://doi.org/10.1159/000503821

Article  PubMed  CAS  Google Scholar 

Wu Y, Pi D, Zhou S et al (2023) Ginsenoside Rh3 induces pyroptosis and ferroptosis through the Stat3/p53/NRF2 axis in colorectal cancer cells. ABBS 55:587–600. https://doi.org/10.3724/abbs.2023068

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xue X, Liu Y, Qu L et al (2022) Ginsenoside Rh3 inhibits lung cancer metastasis by targeting extracellular signal-regulated kinase: a network pharmacology study. Pharmaceuticals 15:758. https://doi.org/10.3390/ph15060758

Article  PubMed  PubMed Central  CAS  Google Scholar 

Basso V, Marchesan E, Ziviani E (2020) A trio has turned into a quartet: DJ-1 interacts with the IP3R-Grp75-VDAC complex to control ER-mitochondria interaction. Cell Calcium 87:102186. https://doi.org/10.1016/j.ceca.2020.102186

Article  PubMed  CAS  Google Scholar 

Yang Y, Sun R, Ge P et al (2023) GRPR down-regulation inhibits spermatogenesis through Ca2+ mediated by PLCβ/IP3R signaling pathway in long-term formaldehyde-exposed rats. Food Chem Toxicol 179:113998. https://doi.org/10.1016/j.fct.2023.113998

Article  PubMed  CAS  Google Scholar 

Zhang H, Zhu Y, Suehiro Y et al (2023) AMPK–FOXO–IP3R signaling pathway mediates neurological and developmental defects caused by mitochondrial DNA mutations. Proc Natl Acad Sci USA 120:e2302490120. https://doi.org/10.1073/pnas.2302490120

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang H, Cheung F, Stoll AC et al (2019) Mitochondrial and calcium perturbations in rat CNS neurons induce calpain-cleavage of Parkin: Phosphatase inhibition stabilizes pSer65Parkin reducing its calpain-cleavage. Biochim Biophys Acta Mol Basis Dis 1865:1436–1450. https://doi.org/10.1016/j.bbadis.2019.02.016

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen J, Wang Y, Cai Z (2024) Euphorbiasteroid induces neurotoxicity through the FOXO/NF-κB/apoptosis signaling pathway. Brain Res Bull 219:111129. https://doi.org/10.1016/j.brainresbull.2024.111129

Article  PubMed  CAS  Google Scholar 

Yurchenko EA, Menchinskaya ES, Pislyagin EA et al (2021) Cytoprotective activity of p-terphenyl polyketides and flavuside B from marine-derived fungi against oxidative stress in neuro-2a cells. Molecules 26:3618. https://doi.org/10.3390/molecules26123618

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yue Q, Xu Y, Lin L, Hoi MPM (2022) Canthin-6-one (CO) from Picrasma quassioides (D.Don) Benn. ameliorates lipopolysaccharide (LPS)-induced astrocyte activation and associated brain endothelial disruption. Phytomedicine 101:154108. https://doi.org/10.1016/j.phymed.2022.154108

Article  PubMed  CAS  Google Scholar 

Teng S, Lei X, Zhang X et al (2022) Transcriptome analysis of the anti-proliferative effects of ginsenoside Rh3 on HCT116 colorectal cancer cells. Molecules 27:5002. https://doi.org/10.3390/molecules27155002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li Q, He J, Li S et al (2023) The combination of gemcitabine and ginsenoside Rh2 enhances the immune function of dendritic cells against pancreatic cancer via the CARD9-BCL10-MALT1 / NF-κB pathway. Clin Immunol 248:109217. https://doi.org/10.1016/j.clim.2022.109217

Article  PubMed  CAS  Google Scholar 

Swarnkar S, Goswami P, Kamat PK et al (2012) Rotenone-induced apoptosis and role of calcium: a study on neuro-2a cells. Arch Toxicol 86:1387–1397. https://doi.org/10.1007/s00204-012-0853-z

Article  PubMed  CAS  Google Scholar 

Groffen AJ, Martens S, Díez Arazola R et al (2010) Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 327:1614–1618. https://doi.org/10.1126/science.1183765

Article  PubMed  PubMed Central  CAS  Google Scholar 

Qin Y, Du Y, Chen L et al (2022) A recurrent SHANK1 mutation implicated in autism spectrum disorder causes autistic-like core behaviors in mice via downregulation of mGluR1-IP3R1-calcium signaling. Mol Psychiatry 27:2985–2998. https://doi.org/10.1038/s41380-022-01539-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schmunk G, Boubion BJ, Smith IF et al (2015) Shared functional defect in IP₃R-mediated calcium signaling in diverse monogenic autism syndromes. Transl Psychiatry 5:e643. https://doi.org/10.1038/tp.2015.123

Article  PubMed  PubMed Central  CAS  Google Scholar 

Okubo Y (2020) Astrocytic Ca2+ signaling mediated by the endoplasmic reticulum in health and disease. J Pharmacol Sci 144:83–88. https://doi.org/10.1016/j.jphs.2020.07.006

Article  PubMed  CAS  Google Scholar 

Ivanova H, Vervliet T, Monaco G et al (2020) Bcl-2-protein family as modulators of IP3 receptors and other organellar Ca2+ channels. Cold Spring Harb Perspect Biol 12:a035089. https://doi.org/10.1101/cshperspect.a035089

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bartok A, Weaver D, Golenár T et al (2019) IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat Commun 10:3726. https://doi.org/10.1038/s41467-019-11646-3

Article  PubMed  PubMed Central  CAS  Google Scholar 

Katona M, Bartók Á, Nichtova Z

Comments (0)

No login
gif