Angelic acid triggers ferroptosis in colorectal cancer cells via targeting and impairing NRF2 protein stability

Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics 2022. CA Cancer J Clin 72(1):7–33. https://doi.org/10.3322/caac.21708

Article  PubMed  Google Scholar 

Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N (2020) 5-Fluorouracil resistance mechanisms in colorectal cancer: from classical pathways to promising processes. Cancer Sci 111(9):3142–3154. https://doi.org/10.1111/cas.14532

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ou J, Peng Y, Yang W, Zhang Y, Hao J, Li F, Chen Y, Zhao Y, Xie X, Wu S, Zha L, Luo X, Xie GF, Wang LT, Sun W, Zhou Q, Li JJ, Liang HJ (2019) ABHD5 blunts the sensitivity of colorectal cancer to fluorouracil via promoting autophagic uracil yield. Nat Commun 10(1):1078. https://doi.org/10.1038/s41467-019-08902-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stockwell BR (2022) Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22(7):381–396. https://doi.org/10.1038/s41568-022-00459-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan R, Lin B, Jin W, Tang L, Hu S, Cai R (2023) NRF2, a superstar of ferroptosis. Antioxidants 12:9. https://doi.org/10.3390/antiox12091739

Article  CAS  Google Scholar 

Mai TT, Hamaï A, Hienzsch A (2017) Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 9(10):1025–1033. https://doi.org/10.1038/nchem.2778

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandey P, Elsori D, Kumar R, Lakhanpal S, Rautela I, Alqahtani TM, Ahmad F, Iqbal D, Khan F (2024) Ferroptosis targeting natural compounds as a promising approach for developing potent liver cancer agents. Front Pharmacol 15:1399677. https://doi.org/10.3389/fphar.2024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, Qi Q, Wu N, Wang Y, Feng Q, Jin R, Jiang L (2022) Aspirin promotes RSL3-induced ferroptosis by suppressing mTOR/SREBP-1/SCD1-mediated lipogenesis in PIK3CA-mutant colorectal cancer. Redox biol. https://doi.org/10.1016/j.redox.2022.102426

Article  PubMed  PubMed Central  Google Scholar 

Fu R, You Y, Wang Y, Wang J, Lu Y, Gao R, Pang M, Yang P (2024) Wang H (2024) Sanggenol L induces ferroptosis in non-small cell lung cancer cells via regulating the miR-26a-1-3p/MDM2/p53 signaling pathway. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2024.116345

Article  PubMed  Google Scholar 

Zhong M, Li X, Zhao F, Huang Y, Long Y, Chen K, Tian X, Liu M, Ma X (2022) Natural compound library screening identifies Sanguinarine chloride for the treatment of SCLC by upregulating CDKN1A. Transl Oncol. https://doi.org/10.1016/j.tranon.2022.101345

Article  PubMed  PubMed Central  Google Scholar 

Chen LL, Fan B, Wang FZ, Song Y, Wang XZ, Meng Y, Chen YM, Xia Q, Sun J (2024) Research progress in pharmacological effects and mechanisms of angelica sinensis against cardiovascular and cerebrovascular diseases. Molecules 29(9):2100. https://doi.org/10.3390/molecules29092100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhi XD, Ren CZ, Li QR, Xi HQ, Li D, Chen QL, Lv XF, Gao X, Wu X, Wang CL, Jiang B, Mao ZN, Jiang H, Liu K, Zhao XK, Li YD (2024) Therapeutic potential of Angelica sinensis in addressing organ fibrosis: a comprehensive review. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2024.116429

Article  PubMed  Google Scholar 

Liu X, Wu Z, Guo C, Guo H, Su Y, Chen Q, Sun C, Liu Q (2022) Chen D (2022) Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Deliv 29(1):138–148. https://doi.org/10.1080/10717544.2021.2021324

Article  CAS  PubMed  Google Scholar 

Ku J-E (2018) Photodamage attenuation effect by angelic acid in UVA irradiation-induced damages in normal human dermal fibroblast. Biomed Dermatol 2(1):8. https://doi.org/10.1186/s41702-017-0013-4

Article  Google Scholar 

Ianevski A, Giri AK, Aittokallio T (2022) SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res 50(W1):W739-w743. https://doi.org/10.1093/nar/gkac382

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan XQ, Wang YC, Yu WK, Wei Y, Lu Y, Dai EY, Dong XW, Zhao B, Hu C, Yuan L, Miao K, Chen BN, Cheng XD, Zhang WD, Qin JJ (2024) Blocking ubiquitin-specific protease 7 induces ferroptosis in gastric cancer via targeting stearoyl-CoA desaturase. ADv Sci. https://doi.org/10.1002/advs.202307899

Article  Google Scholar 

Fu R, Yang P, Li Z, Liu W, Amin S, Li Z (2019) Avenanthramide A triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death Dis 10(8):593. https://doi.org/10.1016/10.1038/s41419-019-1825-5

Article  PubMed  PubMed Central  Google Scholar 

Fu R, Dou ZF, Li N, Fan XY, Sajid A, Zhang JQ, Wang YQ, Li ZW, Li ZY, Yang P (2024) Avenanthramide A potentiates Bim-mediated antineoplastic properties of 5-fluorouracil via targeting KDM4C/MIR17HG/GSK-3β negative feedback loop in colorectal cancer. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2024.07.018

Article  PubMed  PubMed Central  Google Scholar 

Lv C, Huang Y, Wang Q, Wang CJ, Hu HM, Zhang HW, Lu D, Jiang HH, Shen R, Zhang WD, Liu SH (2023) Ainsliadimer A induces ROS-mediated apoptosis in colorectal cancer cells via directly targeting peroxiredoxin 1 and 2. Cell Chem Biol 30(3):295-307.e295. https://doi.org/10.1016/j.chembiol.2023.02.003

Article  CAS  PubMed  Google Scholar 

Zhao Y, Shim N, Cui YH, Kang JH, Yoo KC, Kim S, Yi JM, Kim MJ, Yoon JH, Lee SJ (2021) FBXO15 plays a critical suppressive functional role in regulation of breast cancer progression. Signal Transduct Target Ther 6(1):211. https://doi.org/10.1038/s41392-021-00605-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mäkelä P, Zhang SM, Rudd SG (2021) Drug synergy scoring using minimal dose response matrices. BMC Res Notes 14(1):27. https://doi.org/10.1186/s13104-021-05445-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

He L, Kulesskiy E, Saarela J, Turunen L, Wennerberg K, Aittokallio T, Tang J (2018) Methods for high-throughput drug combination screening and synergy scoring. Methods Mol Biol 1711:351–398. https://doi.org/10.1007/978-1-4939-7493-1_17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Upadhyayula PS, Higgins DM, Mela A, Banu M, Dovas A, Zandkarimi F, Patel P, Mahajan A, Humala N, Nguyen TT, Chaudhary KR, Liao L, Argenziano M, Sudhakar T, Sperring CP, Shapiro BL, Ahmed ER, Kinnslow C, Ye LF, Siegelin MD, Cheng S, Soni R, Bruce JN, Stockwell BR, Canoll P (2023) Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nat Commun 14(1):1187. https://doi.org/10.1038/s41467-023-36630-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue Y, Lu FJ, Chang ZZ, Li J, Gao Y, Zhou J, Luo Y, Lai YF, Cao SY, Li XX, Zhou YH, Li Y, Tan Z, Cheng X, Li X, Chen J, Wang WM (2023) Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nat Commun 14(1):4758. https://doi.org/10.1038/s41467-023-40518-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura T, Conrad M (2024) Exploiting ferroptosis vulnerabilities in cancer. Nat Cell Biol. https://doi.org/10.1038/s41556-024-01425-8

Article  PubMed 

Comments (0)

No login
gif