Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics 2022. CA Cancer J Clin 72(1):7–33. https://doi.org/10.3322/caac.21708
Blondy S, David V, Verdier M, Mathonnet M, Perraud A, Christou N (2020) 5-Fluorouracil resistance mechanisms in colorectal cancer: from classical pathways to promising processes. Cancer Sci 111(9):3142–3154. https://doi.org/10.1111/cas.14532
Article CAS PubMed PubMed Central Google Scholar
Ou J, Peng Y, Yang W, Zhang Y, Hao J, Li F, Chen Y, Zhao Y, Xie X, Wu S, Zha L, Luo X, Xie GF, Wang LT, Sun W, Zhou Q, Li JJ, Liang HJ (2019) ABHD5 blunts the sensitivity of colorectal cancer to fluorouracil via promoting autophagic uracil yield. Nat Commun 10(1):1078. https://doi.org/10.1038/s41467-019-08902-x
Article CAS PubMed PubMed Central Google Scholar
Stockwell BR (2022) Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. https://doi.org/10.1016/j.cell.2022.06.003
Article CAS PubMed PubMed Central Google Scholar
Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22(7):381–396. https://doi.org/10.1038/s41568-022-00459-0
Article CAS PubMed PubMed Central Google Scholar
Yan R, Lin B, Jin W, Tang L, Hu S, Cai R (2023) NRF2, a superstar of ferroptosis. Antioxidants 12:9. https://doi.org/10.3390/antiox12091739
Mai TT, Hamaï A, Hienzsch A (2017) Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 9(10):1025–1033. https://doi.org/10.1038/nchem.2778
Article CAS PubMed PubMed Central Google Scholar
Pandey P, Elsori D, Kumar R, Lakhanpal S, Rautela I, Alqahtani TM, Ahmad F, Iqbal D, Khan F (2024) Ferroptosis targeting natural compounds as a promising approach for developing potent liver cancer agents. Front Pharmacol 15:1399677. https://doi.org/10.3389/fphar.2024
Article CAS PubMed PubMed Central Google Scholar
Chen H, Qi Q, Wu N, Wang Y, Feng Q, Jin R, Jiang L (2022) Aspirin promotes RSL3-induced ferroptosis by suppressing mTOR/SREBP-1/SCD1-mediated lipogenesis in PIK3CA-mutant colorectal cancer. Redox biol. https://doi.org/10.1016/j.redox.2022.102426
Article PubMed PubMed Central Google Scholar
Fu R, You Y, Wang Y, Wang J, Lu Y, Gao R, Pang M, Yang P (2024) Wang H (2024) Sanggenol L induces ferroptosis in non-small cell lung cancer cells via regulating the miR-26a-1-3p/MDM2/p53 signaling pathway. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2024.116345
Zhong M, Li X, Zhao F, Huang Y, Long Y, Chen K, Tian X, Liu M, Ma X (2022) Natural compound library screening identifies Sanguinarine chloride for the treatment of SCLC by upregulating CDKN1A. Transl Oncol. https://doi.org/10.1016/j.tranon.2022.101345
Article PubMed PubMed Central Google Scholar
Chen LL, Fan B, Wang FZ, Song Y, Wang XZ, Meng Y, Chen YM, Xia Q, Sun J (2024) Research progress in pharmacological effects and mechanisms of angelica sinensis against cardiovascular and cerebrovascular diseases. Molecules 29(9):2100. https://doi.org/10.3390/molecules29092100
Article CAS PubMed PubMed Central Google Scholar
Zhi XD, Ren CZ, Li QR, Xi HQ, Li D, Chen QL, Lv XF, Gao X, Wu X, Wang CL, Jiang B, Mao ZN, Jiang H, Liu K, Zhao XK, Li YD (2024) Therapeutic potential of Angelica sinensis in addressing organ fibrosis: a comprehensive review. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2024.116429
Liu X, Wu Z, Guo C, Guo H, Su Y, Chen Q, Sun C, Liu Q (2022) Chen D (2022) Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Deliv 29(1):138–148. https://doi.org/10.1080/10717544.2021.2021324
Article CAS PubMed Google Scholar
Ku J-E (2018) Photodamage attenuation effect by angelic acid in UVA irradiation-induced damages in normal human dermal fibroblast. Biomed Dermatol 2(1):8. https://doi.org/10.1186/s41702-017-0013-4
Ianevski A, Giri AK, Aittokallio T (2022) SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res 50(W1):W739-w743. https://doi.org/10.1093/nar/gkac382
Article CAS PubMed PubMed Central Google Scholar
Guan XQ, Wang YC, Yu WK, Wei Y, Lu Y, Dai EY, Dong XW, Zhao B, Hu C, Yuan L, Miao K, Chen BN, Cheng XD, Zhang WD, Qin JJ (2024) Blocking ubiquitin-specific protease 7 induces ferroptosis in gastric cancer via targeting stearoyl-CoA desaturase. ADv Sci. https://doi.org/10.1002/advs.202307899
Fu R, Yang P, Li Z, Liu W, Amin S, Li Z (2019) Avenanthramide A triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death Dis 10(8):593. https://doi.org/10.1016/10.1038/s41419-019-1825-5
Article PubMed PubMed Central Google Scholar
Fu R, Dou ZF, Li N, Fan XY, Sajid A, Zhang JQ, Wang YQ, Li ZW, Li ZY, Yang P (2024) Avenanthramide A potentiates Bim-mediated antineoplastic properties of 5-fluorouracil via targeting KDM4C/MIR17HG/GSK-3β negative feedback loop in colorectal cancer. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2024.07.018
Article PubMed PubMed Central Google Scholar
Lv C, Huang Y, Wang Q, Wang CJ, Hu HM, Zhang HW, Lu D, Jiang HH, Shen R, Zhang WD, Liu SH (2023) Ainsliadimer A induces ROS-mediated apoptosis in colorectal cancer cells via directly targeting peroxiredoxin 1 and 2. Cell Chem Biol 30(3):295-307.e295. https://doi.org/10.1016/j.chembiol.2023.02.003
Article CAS PubMed Google Scholar
Zhao Y, Shim N, Cui YH, Kang JH, Yoo KC, Kim S, Yi JM, Kim MJ, Yoon JH, Lee SJ (2021) FBXO15 plays a critical suppressive functional role in regulation of breast cancer progression. Signal Transduct Target Ther 6(1):211. https://doi.org/10.1038/s41392-021-00605-4
Article CAS PubMed PubMed Central Google Scholar
Mäkelä P, Zhang SM, Rudd SG (2021) Drug synergy scoring using minimal dose response matrices. BMC Res Notes 14(1):27. https://doi.org/10.1186/s13104-021-05445-7
Article CAS PubMed PubMed Central Google Scholar
He L, Kulesskiy E, Saarela J, Turunen L, Wennerberg K, Aittokallio T, Tang J (2018) Methods for high-throughput drug combination screening and synergy scoring. Methods Mol Biol 1711:351–398. https://doi.org/10.1007/978-1-4939-7493-1_17
Article CAS PubMed PubMed Central Google Scholar
Upadhyayula PS, Higgins DM, Mela A, Banu M, Dovas A, Zandkarimi F, Patel P, Mahajan A, Humala N, Nguyen TT, Chaudhary KR, Liao L, Argenziano M, Sudhakar T, Sperring CP, Shapiro BL, Ahmed ER, Kinnslow C, Ye LF, Siegelin MD, Cheng S, Soni R, Bruce JN, Stockwell BR, Canoll P (2023) Dietary restriction of cysteine and methionine sensitizes gliomas to ferroptosis and induces alterations in energetic metabolism. Nat Commun 14(1):1187. https://doi.org/10.1038/s41467-023-36630-w
Article CAS PubMed PubMed Central Google Scholar
Xue Y, Lu FJ, Chang ZZ, Li J, Gao Y, Zhou J, Luo Y, Lai YF, Cao SY, Li XX, Zhou YH, Li Y, Tan Z, Cheng X, Li X, Chen J, Wang WM (2023) Intermittent dietary methionine deprivation facilitates tumoral ferroptosis and synergizes with checkpoint blockade. Nat Commun 14(1):4758. https://doi.org/10.1038/s41467-023-40518-0
Article CAS PubMed PubMed Central Google Scholar
Nakamura T, Conrad M (2024) Exploiting ferroptosis vulnerabilities in cancer. Nat Cell Biol. https://doi.org/10.1038/s41556-024-01425-8
Comments (0)