A Bottom-up Approach for Mutant and Wild Type Collies Using Physiologically Based Pharmacokinetic (PBPK) Modeling: A Case Study Using Loperamide

Chu X, Prasad B, Neuhoff S, Yoshida K, Leeder JS, Mukherjee D, et al. Clinical Implications of Altered Drug Transporter Abundance/Function and PBPK Modeling in Specific Populations: An ITC Perspective. Clin Pharmacol Ther. 2022;112(3):501–26. https://doi.org/10.1002/cpt.2643.

Article  CAS  Google Scholar 

Snoeys J, Beumont M, Monshouwer M, Ouwerkerk-Mahadevan S. Mechanistic understanding of the nonlinear pharmacokinetics and intersubject variability of simeprevir: A PBPK-guided drug development approach. Clin Pharmacol Ther. 2016;99(2):224–34. https://doi.org/10.1002/cpt.206.

Article  CAS  Google Scholar 

Lancheros Porras KD, Alves IA, Novoa DMA. PBPK Modeling as an Alternative Method of Interspecies Extrapolation that Reduces the Use of Animals: A Systematic Review. Curr Med Chem. 2024;31(1):102–26. https://doi.org/10.2174/0929867330666230408201849.

Article  CAS  Google Scholar 

Campbell JL Jr, Bull RJ, Clewell HJ 3rd. Development of a rat and human PBPK model for bromate and estimation of human equivalent concentrations in drinking water. Int J Environ Health Res. 2021;31(8):951–62. https://doi.org/10.1080/09603123.2019.1702628.

Article  CAS  Google Scholar 

Pande P, Madeen EP, Williams DE, Crowell SR, Ognibene TJ, Turteltaub KW, et al. Translating dosimetry of Dibenzo[def, p]chrysene (DBC) and metabolites across dose and species using physiologically based pharmacokinetic (PBPK) modeling. Toxicol Appl Pharmacol. 2022;438:115830. https://doi.org/10.1016/j.taap.2021.115830.

Article  CAS  Google Scholar 

Hu ZY, Lu J, Zhao Y. A physiologically based pharmacokinetic model of alvespimycin in mice and extrapolation to rats and humans. Br J Pharmacol. 2014;171(11):2778–89. https://doi.org/10.1111/bph.12609.

Article  CAS  PubMed Central  Google Scholar 

Bi Y, Deng J, Murry DJ, An G. A Whole-Body Physiologically Based Pharmacokinetic Model of Gefitinib in Mice and Scale-Up to Humans. AAPS J. 2016;18(1):228–38. https://doi.org/10.1208/s12248-015-9836-3.

Article  CAS  Google Scholar 

Lu XF, Bi K, Chen X. Physiologically based pharmacokinetic model of docetaxel and interspecies scaling: comparison of simple injection with folate receptor-targeting amphiphilic copolymer-modified liposomes. Xenobiotica. 2016;46(12):1093–104. https://doi.org/10.3109/00498254.2016.1155128.

Article  CAS  Google Scholar 

Dressman J, Yamada K. Animal models for oral drug absorption. Drugs and the Pharmaceutical Sciences. 1991;48:235–66.

CAS  Google Scholar 

Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16(5):351–80. https://doi.org/10.1002/bdd.2510160502.

Article  CAS  Google Scholar 

Zhou R, Moench P, Heran C, Lu X, Mathias N, Faria TN, et al. pH-dependent dissolution in vitro and absorption in vivo of weakly basic drugs: development of a canine model. Pharm Res. 2005;22(2):188–92. https://doi.org/10.1007/s11095-004-1185-3.

Article  CAS  Google Scholar 

Akimoto M, Nagahata N, Furuya A, Fukushima K, Higuchi S, Suwa T. Gastric pH profiles of beagle dogs and their use as an alternative to human testing. Eur J Pharm Biopharm. 2000;49(2):99–102. https://doi.org/10.1016/s0939-6411(99)00070-3.

Article  CAS  Google Scholar 

Meyer JH, Dressman J, Fink A, Amidon G. Effect of size and density on canine gastric emptying of nondigestible solids. Gastroenterology. 1985;89(4):805–13. https://doi.org/10.1016/0016-5085(85)90576-1.

Article  CAS  Google Scholar 

Lentz KA. Current methods for predicting human food effect. AAPS J. 2008;10(2):282–8. https://doi.org/10.1208/s12248-008-9025-8.

Article  CAS  PubMed Central  Google Scholar 

Lui CY, Amidon GL, Berardi RR, Fleisher D, Youngberg C, Dressman JB. Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. J Pharm Sci. 1986;75(3):271–4. https://doi.org/10.1002/jps.2600750313.

Article  CAS  Google Scholar 

Pade D, Jamei M, Turner DB, Mistry B, Martinez MN. Danazol oral absorption modelling in the fasted dog: An example of mechanistic understanding of formulation effects on drug pharmacokinetics. Eur J Pharm Biopharm. 2019;141:191–209. https://doi.org/10.1016/j.ejpb.2019.05.024.

Article  CAS  Google Scholar 

Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS J. 2021;23(3):59. https://doi.org/10.1208/s12248-021-00590-0.

Article  Google Scholar 

Pierrillas PB, Henin E, Ball K, Ogier J, Amiel M, Kraus-Berthier L, et al. Prediction of Human Nonlinear Pharmacokinetics of a New Bcl-2 Inhibitor Using PBPK Modeling and Interspecies Extrapolation Strategy. Drug Metab Dispos. 2019;47(6):648–56. https://doi.org/10.1124/dmd.118.085605.

Article  CAS  Google Scholar 

Mealey KL, Bentjen SA, Gay JM, Cantor GH. Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics. 2001;11(8):727–33. https://doi.org/10.1097/00008571-200111000-00012.

Article  CAS  Google Scholar 

Mealey KL, Owens JG, Freeman E. Canine and feline P-glycoprotein deficiency: What we know and where we need to go. J Vet Pharmacol Ther. 2023;46(1):1–16. https://doi.org/10.1111/jvp.13102.

Article  CAS  Google Scholar 

Gramer I, Leidolf R, Doring B, Klintzsch S, Kramer EM, Yalcin E, et al. Breed distribution of the nt230(del4) MDR1 mutation in dogs. Vet J. 2011;189(1):67–71. https://doi.org/10.1016/j.tvjl.2010.06.012.

Article  CAS  Google Scholar 

Fecht S, Distl O. Review of prevalence, genetic aspects and adverse effects of the mdr1-1Delta mutation in dogs. Dtsch Tierarztl Wochenschr. 2008;115(6):212–9.

CAS  Google Scholar 

Mealey KL, Meurs KM. Breed distribution of the ABCB1-1Delta (multidrug sensitivity) polymorphism among dogs undergoing ABCB1 genotyping. J Am Vet Med Assoc. 2008;233(6):921–4. https://doi.org/10.2460/javma.233.6.921.

Article  Google Scholar 

Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, Higgins JW. Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos. 2012;40(9):1825–33. https://doi.org/10.1124/dmd.112.046508.

Article  CAS  Google Scholar 

Shen GL, Zhuang XM, Yuan M, Sun HX, Li H. Evaluation of P-glycoprotein mediated in vitro loperamide biliary excretion with sandwich-cultured rat hepatocytes model. Yao Xue Xue Bao. 2012;47(4):459–65.

CAS  Google Scholar 

Myers MJ, Martinez M, Li H, Qiu J, Troutman L, Sharkey M, et al. Influence of ABCB1 Genotype in Collies on the Pharmacokinetics and Pharmacodynamics of Loperamide in a Dose-Escalation Study. Drug Metab Dispos. 2015;43(9):1392–407. https://doi.org/10.1124/dmd.115.063735.

Article  CAS  Google Scholar 

Jamei M, Bajot F, Neuhoff S, Barter Z, Yang J, Rostami-Hodjegan A, et al. A mechanistic framework for in vitro-in vivo extrapolation of liver membrane transporters: prediction of drug-drug interaction between rosuvastatin and cyclosporine. Clin Pharmacokinet. 2014;53(1):73–87. https://doi.org/10.1007/s40262-013-0097-y.

Article  CAS  Google Scholar 

Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37. https://doi.org/10.1208/s12248-009-9099-y.

Article  CAS  PubMed Central  Google Scholar 

Pade D, Jamei M, Rostami-Hodjegan A, Turner DB. Application of the MechPeff model to predict passive effective intestinal permeability in the different regions of the rodent small intestine and colon. Biopharm Drug Dispos. 2017;38(2):94–114. https://doi.org/10.1002/bdd.2072.

Article  CAS  Google Scholar 

Mealey KL, Waiting D, Raunig DL, Schmidt KR, Nelson FR. Oral bioavailability of P-glycoprotein substrate drugs do not differ between ABCB1-1Delta and ABCB1 wild type dogs. J Vet Pharmacol Ther. 2010;33(5):453–60. https://doi.org/10.1111/j.1365-2885.2010.01170.x.

Article  CAS  Google Scholar 

Mellstrand T. Loperamide–an opiate receptor agonist with gastrointestinal motility effects. Scand J Gastroenterol Suppl. 1987;130:65–6.

Article  CAS  Google Scholar 

O’Brien JD, Thompson DG, McIntyre A, Burnham WR, Walker E. Effect of codeine and loperamide on upper intestinal transit and absorption in normal subjects and patients with postvagotomy diarrhoea. Gut. 1988;29(3):312–8. https://doi.org/10.1136/gut.29.3.312.

Article  CAS  PubMed Central  Google Scholar 

Wagner C, Pan Y, Hsu V, Grillo JA, Zhang L, Reynolds KS, et al. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and

Comments (0)

No login
gif