Chu X, Prasad B, Neuhoff S, Yoshida K, Leeder JS, Mukherjee D, et al. Clinical Implications of Altered Drug Transporter Abundance/Function and PBPK Modeling in Specific Populations: An ITC Perspective. Clin Pharmacol Ther. 2022;112(3):501–26. https://doi.org/10.1002/cpt.2643.
Snoeys J, Beumont M, Monshouwer M, Ouwerkerk-Mahadevan S. Mechanistic understanding of the nonlinear pharmacokinetics and intersubject variability of simeprevir: A PBPK-guided drug development approach. Clin Pharmacol Ther. 2016;99(2):224–34. https://doi.org/10.1002/cpt.206.
Lancheros Porras KD, Alves IA, Novoa DMA. PBPK Modeling as an Alternative Method of Interspecies Extrapolation that Reduces the Use of Animals: A Systematic Review. Curr Med Chem. 2024;31(1):102–26. https://doi.org/10.2174/0929867330666230408201849.
Campbell JL Jr, Bull RJ, Clewell HJ 3rd. Development of a rat and human PBPK model for bromate and estimation of human equivalent concentrations in drinking water. Int J Environ Health Res. 2021;31(8):951–62. https://doi.org/10.1080/09603123.2019.1702628.
Pande P, Madeen EP, Williams DE, Crowell SR, Ognibene TJ, Turteltaub KW, et al. Translating dosimetry of Dibenzo[def, p]chrysene (DBC) and metabolites across dose and species using physiologically based pharmacokinetic (PBPK) modeling. Toxicol Appl Pharmacol. 2022;438:115830. https://doi.org/10.1016/j.taap.2021.115830.
Hu ZY, Lu J, Zhao Y. A physiologically based pharmacokinetic model of alvespimycin in mice and extrapolation to rats and humans. Br J Pharmacol. 2014;171(11):2778–89. https://doi.org/10.1111/bph.12609.
Article CAS PubMed Central Google Scholar
Bi Y, Deng J, Murry DJ, An G. A Whole-Body Physiologically Based Pharmacokinetic Model of Gefitinib in Mice and Scale-Up to Humans. AAPS J. 2016;18(1):228–38. https://doi.org/10.1208/s12248-015-9836-3.
Lu XF, Bi K, Chen X. Physiologically based pharmacokinetic model of docetaxel and interspecies scaling: comparison of simple injection with folate receptor-targeting amphiphilic copolymer-modified liposomes. Xenobiotica. 2016;46(12):1093–104. https://doi.org/10.3109/00498254.2016.1155128.
Dressman J, Yamada K. Animal models for oral drug absorption. Drugs and the Pharmaceutical Sciences. 1991;48:235–66.
Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16(5):351–80. https://doi.org/10.1002/bdd.2510160502.
Zhou R, Moench P, Heran C, Lu X, Mathias N, Faria TN, et al. pH-dependent dissolution in vitro and absorption in vivo of weakly basic drugs: development of a canine model. Pharm Res. 2005;22(2):188–92. https://doi.org/10.1007/s11095-004-1185-3.
Akimoto M, Nagahata N, Furuya A, Fukushima K, Higuchi S, Suwa T. Gastric pH profiles of beagle dogs and their use as an alternative to human testing. Eur J Pharm Biopharm. 2000;49(2):99–102. https://doi.org/10.1016/s0939-6411(99)00070-3.
Meyer JH, Dressman J, Fink A, Amidon G. Effect of size and density on canine gastric emptying of nondigestible solids. Gastroenterology. 1985;89(4):805–13. https://doi.org/10.1016/0016-5085(85)90576-1.
Lentz KA. Current methods for predicting human food effect. AAPS J. 2008;10(2):282–8. https://doi.org/10.1208/s12248-008-9025-8.
Article CAS PubMed Central Google Scholar
Lui CY, Amidon GL, Berardi RR, Fleisher D, Youngberg C, Dressman JB. Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. J Pharm Sci. 1986;75(3):271–4. https://doi.org/10.1002/jps.2600750313.
Pade D, Jamei M, Turner DB, Mistry B, Martinez MN. Danazol oral absorption modelling in the fasted dog: An example of mechanistic understanding of formulation effects on drug pharmacokinetics. Eur J Pharm Biopharm. 2019;141:191–209. https://doi.org/10.1016/j.ejpb.2019.05.024.
Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS J. 2021;23(3):59. https://doi.org/10.1208/s12248-021-00590-0.
Pierrillas PB, Henin E, Ball K, Ogier J, Amiel M, Kraus-Berthier L, et al. Prediction of Human Nonlinear Pharmacokinetics of a New Bcl-2 Inhibitor Using PBPK Modeling and Interspecies Extrapolation Strategy. Drug Metab Dispos. 2019;47(6):648–56. https://doi.org/10.1124/dmd.118.085605.
Mealey KL, Bentjen SA, Gay JM, Cantor GH. Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics. 2001;11(8):727–33. https://doi.org/10.1097/00008571-200111000-00012.
Mealey KL, Owens JG, Freeman E. Canine and feline P-glycoprotein deficiency: What we know and where we need to go. J Vet Pharmacol Ther. 2023;46(1):1–16. https://doi.org/10.1111/jvp.13102.
Gramer I, Leidolf R, Doring B, Klintzsch S, Kramer EM, Yalcin E, et al. Breed distribution of the nt230(del4) MDR1 mutation in dogs. Vet J. 2011;189(1):67–71. https://doi.org/10.1016/j.tvjl.2010.06.012.
Fecht S, Distl O. Review of prevalence, genetic aspects and adverse effects of the mdr1-1Delta mutation in dogs. Dtsch Tierarztl Wochenschr. 2008;115(6):212–9.
Mealey KL, Meurs KM. Breed distribution of the ABCB1-1Delta (multidrug sensitivity) polymorphism among dogs undergoing ABCB1 genotyping. J Am Vet Med Assoc. 2008;233(6):921–4. https://doi.org/10.2460/javma.233.6.921.
Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, Higgins JW. Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos. 2012;40(9):1825–33. https://doi.org/10.1124/dmd.112.046508.
Shen GL, Zhuang XM, Yuan M, Sun HX, Li H. Evaluation of P-glycoprotein mediated in vitro loperamide biliary excretion with sandwich-cultured rat hepatocytes model. Yao Xue Xue Bao. 2012;47(4):459–65.
Myers MJ, Martinez M, Li H, Qiu J, Troutman L, Sharkey M, et al. Influence of ABCB1 Genotype in Collies on the Pharmacokinetics and Pharmacodynamics of Loperamide in a Dose-Escalation Study. Drug Metab Dispos. 2015;43(9):1392–407. https://doi.org/10.1124/dmd.115.063735.
Jamei M, Bajot F, Neuhoff S, Barter Z, Yang J, Rostami-Hodjegan A, et al. A mechanistic framework for in vitro-in vivo extrapolation of liver membrane transporters: prediction of drug-drug interaction between rosuvastatin and cyclosporine. Clin Pharmacokinet. 2014;53(1):73–87. https://doi.org/10.1007/s40262-013-0097-y.
Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37. https://doi.org/10.1208/s12248-009-9099-y.
Article CAS PubMed Central Google Scholar
Pade D, Jamei M, Rostami-Hodjegan A, Turner DB. Application of the MechPeff model to predict passive effective intestinal permeability in the different regions of the rodent small intestine and colon. Biopharm Drug Dispos. 2017;38(2):94–114. https://doi.org/10.1002/bdd.2072.
Mealey KL, Waiting D, Raunig DL, Schmidt KR, Nelson FR. Oral bioavailability of P-glycoprotein substrate drugs do not differ between ABCB1-1Delta and ABCB1 wild type dogs. J Vet Pharmacol Ther. 2010;33(5):453–60. https://doi.org/10.1111/j.1365-2885.2010.01170.x.
Mellstrand T. Loperamide–an opiate receptor agonist with gastrointestinal motility effects. Scand J Gastroenterol Suppl. 1987;130:65–6.
O’Brien JD, Thompson DG, McIntyre A, Burnham WR, Walker E. Effect of codeine and loperamide on upper intestinal transit and absorption in normal subjects and patients with postvagotomy diarrhoea. Gut. 1988;29(3):312–8. https://doi.org/10.1136/gut.29.3.312.
Article CAS PubMed Central Google Scholar
Wagner C, Pan Y, Hsu V, Grillo JA, Zhang L, Reynolds KS, et al. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and
Comments (0)