Dose Optimization of ClpP Agonists Using an Microfluidic Perfusion Platform and Pharmacokinetic-Pharmacodynamic Modeling

Daglish SCD, Fennell EMJ, Graves LM. Targeting Mitochondrial DNA Transcription by POLRMT Inhibition or Depletion as a Potential Strategy for Cancer Treatment. Biomed. 2023;11(6):1598. https://doi.org/10.3390/biomedicines11061598.

Article  CAS  Google Scholar 

Fennell EMJ, Aponte-Collazo LJ, Pathmasiri W, Rushing BR, Barker NK, Partridge MC, et al. Multi-omics analyses reveal ClpP activators disrupt essential mitochondrial pathways in triple-negative breast cancer. Front Pharmacol. 2023;14:1136317. https://doi.org/10.3389/fphar.2023.1136317.

Article  CAS  PubMed Central  Google Scholar 

Fennell EMJ, Aponte-Collazo LJ, Wynn JD, Drizyte-Miller K, Leung E, Greer YE, et al. Characterization of TR-107, a novel chemical activator of the human mitochondrial protease ClpP. Pharmacol Res Perspect. 2022;10(4):e00993. https://doi.org/10.1002/prp2.993.

Article  CAS  PubMed Central  Google Scholar 

Greer YE, Porat-Shliom N, Nagashima K, Stuelten C, Crooks D, Koparde VN, et al. ONC201 kills breast cancer cells in vitro by targeting mitochondria. Oncotarget. 2018;9(26):18454–79. https://doi.org/10.18632/oncotarget.24862.

Article  PubMed Central  Google Scholar 

Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, et al. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel). 2023;15(7):1936. https://doi.org/10.3390/cancers15071936.

Article  CAS  Google Scholar 

Malik IT, Brotz-Oesterhelt H. Conformational control of the bacterial Clp protease by natural product antibiotics. Nat Prod Rep. 2017;34(7):815–31. https://doi.org/10.1039/c6np00125d.

Article  CAS  Google Scholar 

Wong KS, Mabanglo MF, Seraphim TV, Mollica A, Mao YQ, Rizzolo K, et al. Acyldepsipeptide Analogs Dysregulate Human Mitochondrial ClpP Protease Activity and Cause Apoptotic Cell Death. Cell Chem Biol. 2018;25(8):1017-30 e9. https://doi.org/10.1016/j.chembiol.2018.05.014.

Article  CAS  Google Scholar 

Allen JE, Kline CL, Prabhu VV, Wagner J, Ishizawa J, Madhukar N, et al. Discovery and clinical introduction of first-in-class imipridone ONC201. Oncotarget. 2016;7(45):74380–92. https://doi.org/10.18632/oncotarget.11814.

Article  PubMed Central  Google Scholar 

Allen JE, Krigsfeld G, Mayes PA, Patel L, Dicker DT, Patel AS, et al. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med. 2013;5(171):171ra17. https://doi.org/10.1126/scitranslmed.3004828.

Article  CAS  PubMed Central  Google Scholar 

Free RB, Cuoco CA, Xie B, Namkung Y, Prabhu VV, Willette BKA, et al. Pharmacological Characterization of the Imipridone Anticancer Drug ONC201 Reveals a Negative Allosteric Mechanism of Action at the D(2) Dopamine Receptor. Mol Pharmacol. 2021;100(4):372–87. https://doi.org/10.1124/molpharm.121.000336.

Article  CAS  PubMed Central  Google Scholar 

Graves PR, Aponte-Collazo LJ, Fennell EMJ, Graves AC, Hale AE, Dicheva N, et al. Mitochondrial Protease ClpP is a Target for the Anticancer Compounds ONC201 and Related Analogues. ACS Chem Biol. 2019;14(5):1020–9. https://doi.org/10.1021/acschembio.9b00222.

Article  CAS  PubMed Central  Google Scholar 

Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T, Jitkova Y, et al. Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality. Cancer Cell. 2019;35(5):721-37 e9. https://doi.org/10.1016/j.ccell.2019.03.014.

Article  CAS  PubMed Central  Google Scholar 

Fan Y, Wang J, Fang Z, Pierce SR, West L, Staley A, et al. Anti-Tumor and Anti-Invasive Effects of ONC201 on Ovarian Cancer Cells and a Transgenic Mouse Model of Serous Ovarian Cancer. Front Oncol. 2022;12:789450. https://doi.org/10.3389/fonc.2022.789450.

Article  CAS  PubMed Central  Google Scholar 

Farmaki E, Nath A, Emond R, Karimi KL, Grolmusz VK, Cosgrove PA, et al. ONC201/TIC10 enhances durability of mTOR inhibitor everolimus in metastatic ER+ breast cancer. Elife. 2023;12:e85898. https://doi.org/10.7554/eLife.85898.

Article  PubMed Central  Google Scholar 

Ralff MD, Kline CLB, Kucukkase OC, Wagner J, Lim B, Dicker DT, et al. ONC201 Demonstrates Antitumor Effects in Both Triple-Negative and Non-Triple-Negative Breast Cancers through TRAIL-Dependent and TRAIL-Independent Mechanisms. Mol Cancer Ther. 2017;16(7):1290–8. https://doi.org/10.1158/1535-7163.MCT-17-0121.

Article  CAS  PubMed Central  Google Scholar 

Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, et al. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia. 2020;22(12):725–44. https://doi.org/10.1016/j.neo.2020.09.005.

Article  CAS  PubMed Central  Google Scholar 

Stein MN, Bertino JR, Kaufman HL, Mayer T, Moss R, Silk A, et al. First-in-Human Clinical Trial of Oral ONC201 in Patients with Refractory Solid Tumors. Clin Cancer Res. 2017;23(15):4163–9. https://doi.org/10.1158/1078-0432.CCR-16-2658.

Article  CAS  PubMed Central  Google Scholar 

Wagner J, Kline CL, Zhou L, Campbell KS, MacFarlane AW, Olszanski AJ, et al. Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment. J Clin Invest. 2018;128(6):2325–38. https://doi.org/10.1172/JCI96711.

Article  PubMed Central  Google Scholar 

Gardner SL, Tarapore RS, Allen J, McGovern SL, Zaky W, Odia Y, et al. Phase I dose escalation and expansion trial of single agent ONC201 in pediatric diffuse midline gliomas following radiotherapy. Neurooncol Adv. 2022;4(1):vdac143. https://doi.org/10.1093/noajnl/vdac143.

Article  PubMed Central  Google Scholar 

Odia Y, Koschmann C, Vitanza NA, de Blank P, Aguilera D, Allen J, et al. Safety and pharmacokinetics of ONC201 (dordaviprone) administered two consecutive days per week in pediatric patients with H3 K27M-mutant glioma. Neuro Oncol. 2024;26(Supplement_2):S155–64. https://doi.org/10.1093/neuonc/noae001.

Article  PubMed Central  Google Scholar 

Stein MN, Malhotra J, Tarapore RS, Malhotra U, Silk AW, Chan N, et al. Safety and enhanced immunostimulatory activity of the DRD2 antagonist ONC201 in advanced solid tumor patients with weekly oral administration. J Immunother Cancer. 2019;7(1):136. https://doi.org/10.1186/s40425-019-0599-8.

Article  PubMed Central  Google Scholar 

Barrow JC, Lindsley CW. The Importance of PK-PD. J Med Chem. 2023;66(7):4273–4. https://doi.org/10.1021/acs.jmedchem.3c00514.

Article  CAS  Google Scholar 

Chen EP, Dutta S, Ho MH, DeMartino MP. Model-Based Virtual PK/PD Exploration and Machine Learning Approach to Define PK Drivers in Early Drug Discovery. J Med Chem. 2024;67(5):3727–40. https://doi.org/10.1021/acs.jmedchem.3c02169.

Article  CAS  Google Scholar 

Bracken MB. Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med. 2009;102(3):120–2. https://doi.org/10.1258/jrsm.2008.08k033.

Article  PubMed Central  Google Scholar 

Guerrero YA, Desai D, Sullivan C, Kindt E, Spilker ME, Maurer TS, et al. A Microfluidic Perfusion Platform for In Vitro Analysis of Drug Pharmacokinetic-Pharmacodynamic (PK-PD) Relationships. AAPS J. 2020;22(2):53. https://doi.org/10.1208/s12248-020-0430-y.

Article  CAS  Google Scholar 

Komen J, Westerbeek EY, Kolkman RW, Roesthuis J, Lievens C, van den Berg A, et al. Controlled pharmacokinetic anti-cancer drug concentration profiles lead to growth inhibition of colorectal cancer cells in a microfluidic device. Lab Chip. 2020;20(17):3167–78. https://doi.org/10.1039/d0lc00419g.

Article  CAS  Google Scholar 

Lohasz C, Loretan J, Sterker D, Gorlach E, Renggli K, Argast P, et al. A Microphysiological Cell-Culturing System for Pharmacokinetic Drug Exposure and High-Resolution Imaging of Arrays of 3D Microtissues. Front Pharmacol. 2021;12:785851. https://doi.org/10.3389/fphar.2021.785851.

Article  CAS  PubMed Central  Google Scholar 

Petreus T, Cadogan E, Hughes G, Smith A, Pilla Reddy V, Lau A, et al. Tumour-on-chip microfluidic platform for assessment of drug pharmacokinetics and treatment response. Commun Biol. 2021;4(1):1001. https://doi.org/10.1038/s42003-021-02526-y.

Article  CAS  PubMed Central  Google Scholar 

Singh D, Deosarkar SP, Cadogan E, Flemington V, Bray A, Zhang J, et al. A microfluidic system that replicates pharmacokinetic (PK) profiles in vitro improves prediction of in vivo efficacy in preclinical models. PLoS Biol. 2022;20(5):e3001624. https://doi.org/10.1371/journal.pbio.3001624.

Article  CAS  PubMed Central  Google Scholar 

Sung JH, Kam C, Shuler ML. A micr

Comments (0)

No login
gif