Daglish SCD, Fennell EMJ, Graves LM. Targeting Mitochondrial DNA Transcription by POLRMT Inhibition or Depletion as a Potential Strategy for Cancer Treatment. Biomed. 2023;11(6):1598. https://doi.org/10.3390/biomedicines11061598.
Fennell EMJ, Aponte-Collazo LJ, Pathmasiri W, Rushing BR, Barker NK, Partridge MC, et al. Multi-omics analyses reveal ClpP activators disrupt essential mitochondrial pathways in triple-negative breast cancer. Front Pharmacol. 2023;14:1136317. https://doi.org/10.3389/fphar.2023.1136317.
Article CAS PubMed Central Google Scholar
Fennell EMJ, Aponte-Collazo LJ, Wynn JD, Drizyte-Miller K, Leung E, Greer YE, et al. Characterization of TR-107, a novel chemical activator of the human mitochondrial protease ClpP. Pharmacol Res Perspect. 2022;10(4):e00993. https://doi.org/10.1002/prp2.993.
Article CAS PubMed Central Google Scholar
Greer YE, Porat-Shliom N, Nagashima K, Stuelten C, Crooks D, Koparde VN, et al. ONC201 kills breast cancer cells in vitro by targeting mitochondria. Oncotarget. 2018;9(26):18454–79. https://doi.org/10.18632/oncotarget.24862.
Article PubMed Central Google Scholar
Wedam R, Greer YE, Wisniewski DJ, Weltz S, Kundu M, Voeller D, et al. Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers (Basel). 2023;15(7):1936. https://doi.org/10.3390/cancers15071936.
Malik IT, Brotz-Oesterhelt H. Conformational control of the bacterial Clp protease by natural product antibiotics. Nat Prod Rep. 2017;34(7):815–31. https://doi.org/10.1039/c6np00125d.
Wong KS, Mabanglo MF, Seraphim TV, Mollica A, Mao YQ, Rizzolo K, et al. Acyldepsipeptide Analogs Dysregulate Human Mitochondrial ClpP Protease Activity and Cause Apoptotic Cell Death. Cell Chem Biol. 2018;25(8):1017-30 e9. https://doi.org/10.1016/j.chembiol.2018.05.014.
Allen JE, Kline CL, Prabhu VV, Wagner J, Ishizawa J, Madhukar N, et al. Discovery and clinical introduction of first-in-class imipridone ONC201. Oncotarget. 2016;7(45):74380–92. https://doi.org/10.18632/oncotarget.11814.
Article PubMed Central Google Scholar
Allen JE, Krigsfeld G, Mayes PA, Patel L, Dicker DT, Patel AS, et al. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med. 2013;5(171):171ra17. https://doi.org/10.1126/scitranslmed.3004828.
Article CAS PubMed Central Google Scholar
Free RB, Cuoco CA, Xie B, Namkung Y, Prabhu VV, Willette BKA, et al. Pharmacological Characterization of the Imipridone Anticancer Drug ONC201 Reveals a Negative Allosteric Mechanism of Action at the D(2) Dopamine Receptor. Mol Pharmacol. 2021;100(4):372–87. https://doi.org/10.1124/molpharm.121.000336.
Article CAS PubMed Central Google Scholar
Graves PR, Aponte-Collazo LJ, Fennell EMJ, Graves AC, Hale AE, Dicheva N, et al. Mitochondrial Protease ClpP is a Target for the Anticancer Compounds ONC201 and Related Analogues. ACS Chem Biol. 2019;14(5):1020–9. https://doi.org/10.1021/acschembio.9b00222.
Article CAS PubMed Central Google Scholar
Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T, Jitkova Y, et al. Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality. Cancer Cell. 2019;35(5):721-37 e9. https://doi.org/10.1016/j.ccell.2019.03.014.
Article CAS PubMed Central Google Scholar
Fan Y, Wang J, Fang Z, Pierce SR, West L, Staley A, et al. Anti-Tumor and Anti-Invasive Effects of ONC201 on Ovarian Cancer Cells and a Transgenic Mouse Model of Serous Ovarian Cancer. Front Oncol. 2022;12:789450. https://doi.org/10.3389/fonc.2022.789450.
Article CAS PubMed Central Google Scholar
Farmaki E, Nath A, Emond R, Karimi KL, Grolmusz VK, Cosgrove PA, et al. ONC201/TIC10 enhances durability of mTOR inhibitor everolimus in metastatic ER+ breast cancer. Elife. 2023;12:e85898. https://doi.org/10.7554/eLife.85898.
Article PubMed Central Google Scholar
Ralff MD, Kline CLB, Kucukkase OC, Wagner J, Lim B, Dicker DT, et al. ONC201 Demonstrates Antitumor Effects in Both Triple-Negative and Non-Triple-Negative Breast Cancers through TRAIL-Dependent and TRAIL-Independent Mechanisms. Mol Cancer Ther. 2017;16(7):1290–8. https://doi.org/10.1158/1535-7163.MCT-17-0121.
Article CAS PubMed Central Google Scholar
Prabhu VV, Morrow S, Rahman Kawakibi A, Zhou L, Ralff M, Ray J, et al. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy. Neoplasia. 2020;22(12):725–44. https://doi.org/10.1016/j.neo.2020.09.005.
Article CAS PubMed Central Google Scholar
Stein MN, Bertino JR, Kaufman HL, Mayer T, Moss R, Silk A, et al. First-in-Human Clinical Trial of Oral ONC201 in Patients with Refractory Solid Tumors. Clin Cancer Res. 2017;23(15):4163–9. https://doi.org/10.1158/1078-0432.CCR-16-2658.
Article CAS PubMed Central Google Scholar
Wagner J, Kline CL, Zhou L, Campbell KS, MacFarlane AW, Olszanski AJ, et al. Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment. J Clin Invest. 2018;128(6):2325–38. https://doi.org/10.1172/JCI96711.
Article PubMed Central Google Scholar
Gardner SL, Tarapore RS, Allen J, McGovern SL, Zaky W, Odia Y, et al. Phase I dose escalation and expansion trial of single agent ONC201 in pediatric diffuse midline gliomas following radiotherapy. Neurooncol Adv. 2022;4(1):vdac143. https://doi.org/10.1093/noajnl/vdac143.
Article PubMed Central Google Scholar
Odia Y, Koschmann C, Vitanza NA, de Blank P, Aguilera D, Allen J, et al. Safety and pharmacokinetics of ONC201 (dordaviprone) administered two consecutive days per week in pediatric patients with H3 K27M-mutant glioma. Neuro Oncol. 2024;26(Supplement_2):S155–64. https://doi.org/10.1093/neuonc/noae001.
Article PubMed Central Google Scholar
Stein MN, Malhotra J, Tarapore RS, Malhotra U, Silk AW, Chan N, et al. Safety and enhanced immunostimulatory activity of the DRD2 antagonist ONC201 in advanced solid tumor patients with weekly oral administration. J Immunother Cancer. 2019;7(1):136. https://doi.org/10.1186/s40425-019-0599-8.
Article PubMed Central Google Scholar
Barrow JC, Lindsley CW. The Importance of PK-PD. J Med Chem. 2023;66(7):4273–4. https://doi.org/10.1021/acs.jmedchem.3c00514.
Chen EP, Dutta S, Ho MH, DeMartino MP. Model-Based Virtual PK/PD Exploration and Machine Learning Approach to Define PK Drivers in Early Drug Discovery. J Med Chem. 2024;67(5):3727–40. https://doi.org/10.1021/acs.jmedchem.3c02169.
Bracken MB. Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med. 2009;102(3):120–2. https://doi.org/10.1258/jrsm.2008.08k033.
Article PubMed Central Google Scholar
Guerrero YA, Desai D, Sullivan C, Kindt E, Spilker ME, Maurer TS, et al. A Microfluidic Perfusion Platform for In Vitro Analysis of Drug Pharmacokinetic-Pharmacodynamic (PK-PD) Relationships. AAPS J. 2020;22(2):53. https://doi.org/10.1208/s12248-020-0430-y.
Komen J, Westerbeek EY, Kolkman RW, Roesthuis J, Lievens C, van den Berg A, et al. Controlled pharmacokinetic anti-cancer drug concentration profiles lead to growth inhibition of colorectal cancer cells in a microfluidic device. Lab Chip. 2020;20(17):3167–78. https://doi.org/10.1039/d0lc00419g.
Lohasz C, Loretan J, Sterker D, Gorlach E, Renggli K, Argast P, et al. A Microphysiological Cell-Culturing System for Pharmacokinetic Drug Exposure and High-Resolution Imaging of Arrays of 3D Microtissues. Front Pharmacol. 2021;12:785851. https://doi.org/10.3389/fphar.2021.785851.
Article CAS PubMed Central Google Scholar
Petreus T, Cadogan E, Hughes G, Smith A, Pilla Reddy V, Lau A, et al. Tumour-on-chip microfluidic platform for assessment of drug pharmacokinetics and treatment response. Commun Biol. 2021;4(1):1001. https://doi.org/10.1038/s42003-021-02526-y.
Article CAS PubMed Central Google Scholar
Singh D, Deosarkar SP, Cadogan E, Flemington V, Bray A, Zhang J, et al. A microfluidic system that replicates pharmacokinetic (PK) profiles in vitro improves prediction of in vivo efficacy in preclinical models. PLoS Biol. 2022;20(5):e3001624. https://doi.org/10.1371/journal.pbio.3001624.
Article CAS PubMed Central Google Scholar
Sung JH, Kam C, Shuler ML. A micr
Comments (0)