Tenchov R, Sasso JM, Wang X, Zhou QA. Aging hallmarks and progression and age-related diseases: a landscape view of research advancement. ACS Chem Neurosci. 2023;15(1):1–30.
Wang X, Ma Z, Cheng J, Lv Z. A genetic program theory of aging using an RNA population model. Ageing Res Rev. 2014;13:46–54.
Miquel J. An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol. 1998;33(1–2):113–26.
Article CAS PubMed Google Scholar
Martin GM. Genetic engineering of mice to test the oxidative damage theory of aging. Ann N Y Acad Sci. 2005;1055:26–34.
Article CAS PubMed Google Scholar
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key molecular mechanisms of aging, biomarkers, and potential interventions. Mol Biol. 2020;54(6):777–811.
Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/cas-9-mediated genome editing. Biolog Targets Therapy. 2021;15:353–61.
Harman D. The aging process. Proc Natl Acad Sci U S A. 1981;78(11):7124–8.
Article CAS PubMed PubMed Central Google Scholar
Beyret E, Liao H-K, Yamamoto M, Hernandez-Benitez R, Fu Y, Erikson G, et al. Single-dose CRISPR–Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome. Nat Med. 2019;25(3):419–22.
Article CAS PubMed PubMed Central Google Scholar
Wang W, Zheng Y, Sun S, Li W, Song M, Ji Q, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med. 2021. https://doi.org/10.1126/scitranslmed.abd2655.
Article PubMed PubMed Central Google Scholar
Wang W, Zheng Y, Sun S, Li W, Song M, Ji Q, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Translat Med. 2021;13(575):2655.
Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin Drug Deliv. 2023;20(4):471–87.
Article CAS PubMed PubMed Central Google Scholar
Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31.
Article CAS PubMed PubMed Central Google Scholar
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014. https://doi.org/10.1126/science.1258096.
Article PubMed PubMed Central Google Scholar
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.
Article CAS PubMed PubMed Central Google Scholar
Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for crop improvement: an update review. Front Plant Sci. 2018;9:985.
Article PubMed PubMed Central Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.
Article CAS PubMed PubMed Central Google Scholar
Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science. 2015;350(6262):823–6.
Article CAS PubMed Google Scholar
O’Keeffe Ahern J, Lara-Sáez I, Zhou D, Murillas R, Bonafont J, Mencía Á, et al. Non-viral delivery of CRISPR–Cas9 complexes for targeted gene editing via a polymer delivery system. Gene Ther. 2022;29(3–4):157–70.
Shao M, Xu T-R, Chen C-S. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoolog Res. 2016;37(4):191–204.
Kim T, Tarangelo A. Telomeres and telomerase in cancer: overview and therapeutic potential. J Stud Res. 2022;11(3):1597.
Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun. 2021;27:100323.
Rossiello F, Jurk D, Passos JF, Dadda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nature cell Biol. 2022;24(2):135–47.
Article CAS PubMed Google Scholar
Mao P, Liu J, Zhang Z, Zhang H, Liu H, Gao S, et al. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat Commun. 2016;7:12154.
Article PubMed PubMed Central Google Scholar
Kim H, Ham S, Jo M, Lee GH, Lee YS, Shin JH, et al. CRISPR-Cas9 mediated telomere removal leads to mitochondrial stress and protein aggregation. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18102093.
Article PubMed PubMed Central Google Scholar
Davis DJ, Yeddula SGR. CRISPR Advancements for Human Health. Mo Med. 2024;121(2):170.
PubMed PubMed Central Google Scholar
Carneiro MC, Henriques CM, Nabais J, Ferreira T, Carvalho T, Ferreira MG. Short telomeres in key tissues initiate local and systemic aging in zebrafish. PLoS Genet. 2016;12(1):e1005798.
Article PubMed PubMed Central Google Scholar
Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY). 2016;8(1):3–11.
Article CAS PubMed Google Scholar
Kordyukova MY, Kalmykova AI. Nature and functions of telomeric transcripts. Biochemistry (Mosc). 2019;84(2):137–46.
Article CAS PubMed Google Scholar
Guo Y, Chen Y, Zhang L, Ma L, Jiang K, Yao G, et al. TERT promoter mutations and telomerase in melanoma. J Oncol. 2022;2022:6300329.
Article PubMed PubMed Central Google Scholar
Brane AC, Tollefsbol TO. Targeting telomeres and telomerase: studies in aging and disease utilizing CRISPR/Cas9 technology. Cells. 2019. https://doi.org/10.3390/cells8020186.
Article PubMed PubMed Central Google Scholar
Chiba K, Johnson JZ, Vogan JM, Wagner T, Boyle JM, Hockemeyer D. Cancer-associated TERT promoter mutations abrogate telomerase silencing. Elife. 2015;4:e07918.
Article PubMed PubMed Central Google Scholar
Hu Y, Zhang H, Guo Z, Zhou J, Zhang W, Gong M, et al. CKM and TERT dual promoters drive CRISPR-dCas9 to specifically inhibit the malignant behavior of osteosarcoma cells. Cell Mol Biol Lett. 2023;28(1):52.
Comments (0)