Applications of CRISPR-Cas9 in mitigating cellular senescence and age-related disease progression

Tenchov R, Sasso JM, Wang X, Zhou QA. Aging hallmarks and progression and age-related diseases: a landscape view of research advancement. ACS Chem Neurosci. 2023;15(1):1–30.

Article  PubMed  Google Scholar 

Wang X, Ma Z, Cheng J, Lv Z. A genetic program theory of aging using an RNA population model. Ageing Res Rev. 2014;13:46–54.

Article  PubMed  Google Scholar 

Miquel J. An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol. 1998;33(1–2):113–26.

Article  CAS  PubMed  Google Scholar 

Martin GM. Genetic engineering of mice to test the oxidative damage theory of aging. Ann N Y Acad Sci. 2005;1055:26–34.

Article  CAS  PubMed  Google Scholar 

Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key molecular mechanisms of aging, biomarkers, and potential interventions. Mol Biol. 2020;54(6):777–811.

Article  CAS  Google Scholar 

Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/cas-9-mediated genome editing. Biolog Targets Therapy. 2021;15:353–61.

Article  Google Scholar 

Harman D. The aging process. Proc Natl Acad Sci U S A. 1981;78(11):7124–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beyret E, Liao H-K, Yamamoto M, Hernandez-Benitez R, Fu Y, Erikson G, et al. Single-dose CRISPR–Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome. Nat Med. 2019;25(3):419–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Zheng Y, Sun S, Li W, Song M, Ji Q, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med. 2021. https://doi.org/10.1126/scitranslmed.abd2655.

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Zheng Y, Sun S, Li W, Song M, Ji Q, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Translat Med. 2021;13(575):2655.

Article  CAS  Google Scholar 

Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin Drug Deliv. 2023;20(4):471–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014. https://doi.org/10.1126/science.1258096.

Article  PubMed  PubMed Central  Google Scholar 

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for crop improvement: an update review. Front Plant Sci. 2018;9:985.

Article  PubMed  PubMed Central  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science. 2015;350(6262):823–6.

Article  CAS  PubMed  Google Scholar 

O’Keeffe Ahern J, Lara-Sáez I, Zhou D, Murillas R, Bonafont J, Mencía Á, et al. Non-viral delivery of CRISPR–Cas9 complexes for targeted gene editing via a polymer delivery system. Gene Ther. 2022;29(3–4):157–70.

Article  PubMed  Google Scholar 

Shao M, Xu T-R, Chen C-S. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoolog Res. 2016;37(4):191–204.

CAS  Google Scholar 

Kim T, Tarangelo A. Telomeres and telomerase in cancer: overview and therapeutic potential. J Stud Res. 2022;11(3):1597.

Article  Google Scholar 

Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun. 2021;27:100323.

Article  PubMed  Google Scholar 

Rossiello F, Jurk D, Passos JF, Dadda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nature cell Biol. 2022;24(2):135–47.

Article  CAS  PubMed  Google Scholar 

Mao P, Liu J, Zhang Z, Zhang H, Liu H, Gao S, et al. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat Commun. 2016;7:12154.

Article  PubMed  PubMed Central  Google Scholar 

Kim H, Ham S, Jo M, Lee GH, Lee YS, Shin JH, et al. CRISPR-Cas9 mediated telomere removal leads to mitochondrial stress and protein aggregation. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18102093.

Article  PubMed  PubMed Central  Google Scholar 

Davis DJ, Yeddula SGR. CRISPR Advancements for Human Health. Mo Med. 2024;121(2):170.

PubMed  PubMed Central  Google Scholar 

Carneiro MC, Henriques CM, Nabais J, Ferreira T, Carvalho T, Ferreira MG. Short telomeres in key tissues initiate local and systemic aging in zebrafish. PLoS Genet. 2016;12(1):e1005798.

Article  PubMed  PubMed Central  Google Scholar 

Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY). 2016;8(1):3–11.

Article  CAS  PubMed  Google Scholar 

Kordyukova MY, Kalmykova AI. Nature and functions of telomeric transcripts. Biochemistry (Mosc). 2019;84(2):137–46.

Article  CAS  PubMed  Google Scholar 

Guo Y, Chen Y, Zhang L, Ma L, Jiang K, Yao G, et al. TERT promoter mutations and telomerase in melanoma. J Oncol. 2022;2022:6300329.

Article  PubMed  PubMed Central  Google Scholar 

Brane AC, Tollefsbol TO. Targeting telomeres and telomerase: studies in aging and disease utilizing CRISPR/Cas9 technology. Cells. 2019. https://doi.org/10.3390/cells8020186.

Article  PubMed  PubMed Central  Google Scholar 

Chiba K, Johnson JZ, Vogan JM, Wagner T, Boyle JM, Hockemeyer D. Cancer-associated TERT promoter mutations abrogate telomerase silencing. Elife. 2015;4:e07918.

Article  PubMed  PubMed Central  Google Scholar 

Hu Y, Zhang H, Guo Z, Zhou J, Zhang W, Gong M, et al. CKM and TERT dual promoters drive CRISPR-dCas9 to specifically inhibit the malignant behavior of osteosarcoma cells. Cell Mol Biol Lett. 2023;28(1):52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif