O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol. 2018. 9.
Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A, Santin I. The role of lncRNAs in gene expression regulation through mRNA stabilization. Non-coding RNA. 2021;7(1):3.
CAS PubMed PubMed Central Google Scholar
Zhao X, Cai Y, Xu J. Circular RNAs: biogenesis, mechanism, and function in human cancers. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20163926.
PubMed PubMed Central Google Scholar
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.
CAS PubMed PubMed Central Google Scholar
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.
PubMed PubMed Central Google Scholar
Cm C. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.
Pavlíková L, Šereš M, Breier A, Sulová Z. The roles of microRNAs in cancer multidrug resistance. Cancers. 2022. https://doi.org/10.3390/cancers14041090.
PubMed PubMed Central Google Scholar
He M, Zhou W, Li C, Guo M. MicroRNAs, DNA damage response, and cancer treatment. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17122087.
PubMed PubMed Central Google Scholar
Pan G, Liu Y, Shang L, Zhou F, Yang S. EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun. 2021;41(3):199–217.
Niu T, Zhang W, Xiao W. Microrna regulation of cancer stem cells in the pathogenesis of breast cancer. Cancer Cell Int. 2021;21(1):31.
CAS PubMed PubMed Central Google Scholar
Eichmüller SB, Osen W, Mandelboim O, Seliger B. Immune Modulatory microRNAs Involved in Tumor Attack and Tumor Immune Escape. J National Cancer Inst. 2017. 109(10).
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9.
Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I, et al. Mir-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res. 2011;71(20):6450–62.
Liu X, Li J, Qin F, Dai S. Mir-152 as a tumor suppressor microRNA: target recognition and regulation in cancer. Oncol Lett. 2016;11(6):3911–6.
CAS PubMed PubMed Central Google Scholar
Shadbad MA, Safaei S, Brunetti O, Derakhshani A, Lotfinejad P, Mokhtarzadeh A, et al. A systematic review on the therapeutic potentiality of PD-L1-inhibiting microRNAs for triple-negative breast cancer: toward single-cell sequencing-guided biomimetic delivery. Genes. 2021;12(8):1206.
CAS PubMed PubMed Central Google Scholar
Maimaitiming A, Wusiman A, Aimudula A, Kuerban X, Su P. Microrna-152 inhibits cell proliferation, migration, and invasion in breast cancer. Oncol Res. 2020;28(1):13–9.
PubMed PubMed Central Google Scholar
Song Y, Zhang M, Lu MM, Qu LY, Xu SG, Li YZ, et al. EPAS1 targeting by miR-152-3p in Paclitaxel-resistant breast cancer. J Cancer. 2020;11(19):5822–30.
PubMed PubMed Central Google Scholar
Lopes BC, Braga CZ, Ventura FV, de Oliveira JG, Kato-Junior EM, Bordin-Junior NA, et al. MiR-210 and miR-152 as biomarkers by liquid biopsy in invasive ductal carcinoma. J Pers Med. 2021. https://doi.org/10.3390/jpm11010031.
PubMed PubMed Central Google Scholar
Safi A, Delgir S, Ilkhani K, Samei A, Mousavi SR, Zeynali-Khasraghi Z, et al. The expression of miRNA-152-3p and miRNA-185 in tumor tissues versus margin tissues of patients with chemo-treated breast cancer. BMC Res Notes. 2021;14(1):234.
CAS PubMed PubMed Central Google Scholar
Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol. 2008;214(1):17–24.
Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2013;5(1):3–13.
Ge S, Wang D, Kong Q, Gao W, Sun J. Function of miR-152 as a tumor suppressor in human breast cancer by targeting PIK3CA. Oncol Res. 2017;25(8):1363–71.
PubMed PubMed Central Google Scholar
Sengupta D, Deb M, Rath SK, Kar S, Parbin S, Pradhan N, et al. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp Cell Res. 2016;346(2):176–87.
Chen MJ, Cheng YM, Chen CC, Chen YC, Shen CJ. MiR-148a and miR-152 reduce tamoxifen resistance in ER+ breast cancer via downregulating ALCAM. Biochem Biophys Res Commun. 2017;483(2):840–6.
Chen X, Wang YW, Gao P. SPIN1, negatively regulated by miR-148/152, enhances adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer. J Exp Clin Cancer Res. 2018;37(1):100.
PubMed PubMed Central Google Scholar
Jiang CF, Xie YX, Qian YC, Wang M, Liu LZ, Shu YQ, et al. TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int. 2021;21(1):542.
CAS PubMed PubMed Central Google Scholar
Wen YY, Liu WT, Sun HR, Ge X, Shi ZM, Wang M, et al. IGF-1-mediated PKM2/β-catenin/miR-152 regulatory circuit in breast cancer. Sci Rep. 2017;7(1):15897.
PubMed PubMed Central Google Scholar
Xu Q, Liu LZ, Yin Y, He J, Li Q, Qian X, et al. Regulatory circuit of PKM2/NF-κB/miR-148a/152-modulated tumor angiogenesis and cancer progression. Oncogene. 2015;34(43):5482–93.
Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, et al. The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer. 2018;17(1):160.
CAS PubMed PubMed Central Google Scholar
Jin Y, Yang L, Li X, Liu F. Circular RNA KIF4A promotes cell migration, invasion and inhibits apoptosis through miR-152/ZEB1 axis in breast cancer. Diagn Pathol. 2020;15(1):55.
CAS PubMed PubMed Central Google Scholar
Du C, Zhang J, Zhang L, Zhang Y, Wang Y, Li J. Hsa_circRNA_102229 facilitates the progression of triple-negative breast cancer via regulating the miR-152-3p/PFTK1 pathway. J Gene Med. 2021;23(9): e3365.
CAS PubMed PubMed Central Google Scholar
Li Z, Li Y, Li Y, Ren K, Li X, Han X, et al. Long non-coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR-152. J Biochem Mol Toxicol. 2017. https://doi.org/10.1002/jbt.21933.
Marques JHM, Mota AL, Oliveira JG, Lacerda JZ, Stefani JP, Ferreira LC, et al. Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: in vivo and in vitro studies. Life Sci. 2018;208:131–8.
Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, Wu G, et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene. 2014;33(3):378–86.
Zhou X, Zhao F, Wang ZN, Song YX, Chang H, Chiang Y, et al. Altered expression of miR-152 and miR-148a in ovarian cancer is related to cell proliferation. Oncol Rep. 2012;27(2):447–54.
Langhe R, Norris L, Saadeh FA, Blackshields G, Varley R, Harrison A, et al. A novel serum microRNA panel to discriminate benign from malignant ovarian disease. Cancer Lett. 2015;356(2 Pt B):628–36.
Qin W, Xie W, He Q, Sun T, Meng C, Yang K, et al. MicroRNA-152 inhibits ovarian cancer cell proliferation and migration and may infer improved outcomes in ovarian cancer through targeting FOXP1. Exp Ther Med. 2018;15(2):1672–9.
Khajehnoori S, Zarei F, Mazaheri M, Dehghani-Firoozabadi A. Epidrug modulated expression of MiR–152 and MiR-148a reverse cisplatin resistance in ovarian cancer cells: an experimental in-vitro study. Iran J Pharm Res. 2020;19(3):509–19.
Comments (0)