Koganemaru S, Kuboki Y, Koga Y, Kojima T, Yamauchi M, Maeda N, et al. U3–1402, a novel HER3-targeting antibody-drug conjugate, for the treatment of colorectal cancer. Mol Cancer Ther. 2019;18(11):2043–50. https://doi.org/10.1158/1535-7163.Mct-19-0452.
Article CAS PubMed Google Scholar
Hashimoto Y, Koyama K, Kamai Y, Hirotani K, Ogitani Y, Zembutsu A, et al. A novel HER3-targeting antibody-drug conjugate, U3–1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin Cancer Res. 2019;25(23):7151–61. https://doi.org/10.1158/1078-0432.Ccr-19-1745.
Article CAS PubMed Google Scholar
Nakada T, Sugihara K, Jikoh T, Abe Y, Agatsuma T. The latest research and development into the antibody–drug conjugate, [fam-] trastuzumab deruxtecan (DS-8201a), for HER2 cancer therapy. Chem Pharm Bull (Tokyo). 2019;67(3):173–85. https://doi.org/10.1248/cpb.c18-00744.
Article CAS PubMed Google Scholar
Koganemaru S, Kawai T, Fuchigami H, Maeda N, Koyama K, Kuboki Y, et al. Quantitative analysis of drug distribution in heterogeneous tissues using dual-stacking capillary electrophoresis-mass spectrometry. Br J Pharmacol. 2023;180(6):762–74. https://doi.org/10.1111/bph.15988.
Article CAS PubMed Google Scholar
Qin Q, Gong L. Current analytical strategies for antibody–drug conjugates in biomatrices. Molecules. 2022. https://doi.org/10.3390/molecules27196299.
Article PubMed PubMed Central Google Scholar
Krop IE, Masuda N, Mukohara T, Takahashi S, Nakayama T, Inoue K, et al. Patritumab deruxtecan (HER3-DXd), a human epidermal growth factor receptor 3-directed antibody-drug conjugate, in patients with previously treated human epidermal growth factor receptor 3-expressing metastatic breast cancer: a multicenter, phase I/II trial. J Clin Oncol. 2023;41(36):5550–60. https://doi.org/10.1200/jco.23.00882.
Article CAS PubMed PubMed Central Google Scholar
Jänne PA, Baik C, Su WC, Johnson ML, Hayashi H, Nishio M, et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov. 2022;12(1):74–89. https://doi.org/10.1158/2159-8290.Cd-21-0715.
Lu Y, Shimizu S, Sawamura R, Tajima N, He L, Lee M, et al. Population pharmacokinetics of patritumab deruxtecan in patients with solid tumors. J Clin Pharmacol. 2023;63(1):77–90. https://doi.org/10.1002/jcph.2137.
Article CAS PubMed Google Scholar
Yin O, Xiong Y, Endo S, Yoshihara K, Garimella T, AbuTarif M, et al. Population pharmacokinetics of trastuzumab deruxtecan in patients with HER2-positive breast cancer and other solid tumors. Clin Pharmacol Ther. 2021;109(5):1314–25. https://doi.org/10.1002/cpt.2096.
Article CAS PubMed Google Scholar
Sathe AG, Singh I, Singh P, Diderichsen PM, Wang X, Chang P, et al. Population pharmacokinetics of sacituzumab govitecan in patients with metastatic triple-negative breast cancer and other solid tumors. Clin Pharmacokinet. 2024;63(5):669–81. https://doi.org/10.1007/s40262-024-01366-3.
Article CAS PubMed PubMed Central Google Scholar
Lu D, Lu T, Shi R, Gibiansky L, Agarwal P, Shemesh CS, et al. Application of a two-analyte integrated population pharmacokinetic model to evaluate the impact of intrinsic and extrinsic factors on the pharmacokinetics of polatuzumab vedotin in patients with non-Hodgkin lymphoma. Pharm Res. 2020;37(12):252. https://doi.org/10.1007/s11095-020-02933-6.
Article CAS PubMed PubMed Central Google Scholar
Yu HA, Goto Y, Hayashi H, Felip E, Chih-Hsin Yang J, Reck M, et al. HERTHENA-Lung01, a phase II trial of patritumab deruxtecan (HER3-DXd) in epidermal growth factor receptor-mutated non-small-cell lung cancer after epidermal growth factor receptor tyrosine kinase inhibitor therapy and platinum-based chemotherapy. J Clin Oncol. 2023;41(35):5363–75. https://doi.org/10.1200/jco.23.01476.
Article CAS PubMed PubMed Central Google Scholar
Yu HA, Baik C, Kim DW, Johnson ML, Hayashi H, Nishio M, et al. Translational insights and overall survival in the U31402-A-U102 study of patritumab deruxtecan (HER3-DXd) in EGFR-mutated NSCLC. Ann Oncol. 2024;35(5):437–47. https://doi.org/10.1016/j.annonc.2024.02.003.
Article CAS PubMed Google Scholar
Lu D, Lu T, Gibiansky L, Li X, Li C, Agarwal P, et al. Integrated two-analyte population pharmacokinetic model of polatuzumab vedotin in patients with non-Hodgkin lymphoma. CPT Pharmacometrics Syst Pharmacol. 2020;9(1):48–59. https://doi.org/10.1002/psp4.12482.
Article CAS PubMed Google Scholar
Lu D, Gibiansky L, Agarwal P, Dere RC, Li C, Chu YW, et al. Integrated two-analyte population pharmacokinetic model for antibody–drug conjugates in patients: implications for reducing pharmacokinetic sampling. CPT Pharmacomet Syst Pharmacol. 2016;5(12):665–73. https://doi.org/10.1002/psp4.12137.
Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36. https://doi.org/10.2133/dmpk.24.25.
Article CAS PubMed Google Scholar
Germovsek E, Cheng M, Giragossian C. Allometric scaling of therapeutic monoclonal antibodies in preclinical and clinical settings. MAbs. 2021;13(1):1964935. https://doi.org/10.1080/19420862.2021.1964935.
Article CAS PubMed PubMed Central Google Scholar
Holford NH. A size standard for pharmacokinetics. Clin Pharmacokinet. 1996;30(5):329–32. https://doi.org/10.2165/00003088-199630050-00001.
Comments (0)