Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95. https://doi.org/10.1016/S1470-2045(10)70218-7.
Yuan L, Springer J, Palus S, Busquets S, Jove Q, Alves de Lima Junior E, et al. The atypical beta-blocker S-oxprenolol reduces cachexia and improves survival in a rat cancer cachexia model. J Cachexia Sarcopenia Muscle. 2023;14(1):653–60. https://doi.org/10.1002/jcsm.13116.
Fearon KC, Moses AG. Cancer cachexia. Int J Cardiol. 2002;85(1):73–81. https://doi.org/10.1016/s0167-5273(02)00235-8.
Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754–62. https://doi.org/10.1038/nrc3829.
Article PubMed CAS Google Scholar
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–53. https://doi.org/10.1002/ijc.31937.
Article PubMed CAS Google Scholar
Park MS, Ha HK, Choi BS, Kim KW, Myung SJ, Kim AY, et al. Scirrhous gastric carcinoma: endoscopy versus upper gastrointestinal radiography. Radiology. 2004;231(2):421–6. https://doi.org/10.1148/radiol.2312030248.
Katai H, Ishikawa T, Akazawa K, Isobe Y, Miyashiro I, Oda I, et al. Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007). Gastric Cancer. 2018;21(1):144–54. https://doi.org/10.1007/s10120-017-0716-7.
Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9. https://doi.org/10.1038/nature13480.
Nashimoto A, Akazawa K, Isobe Y, Miyashiro I, Katai H, Kodera Y, et al. Gastric cancer treated in 2002 in Japan: 2009 annual report of the JGCA nationwide registry. Gastric Cancer. 2013;16(1):1–27. https://doi.org/10.1007/s10120-012-0163-4.
Furukawa H, Hiratsuka M, Iwanaga T, Imaoka S, Ishikawa O, Kabuto T, et al. Extended surgery–left upper abdominal exenteration plus Appleby’s method–for type 4 gastric carcinoma. Ann Surg Oncol. 1997;4(3):209–14. https://doi.org/10.1007/BF02306612.
Article PubMed CAS Google Scholar
Suga S, Iwase H, Shimada M, Nishio Y, Ichihara T, Ichihara S, et al. Neoadjuvant chemotherapy in scirrhous cancer of the stomach using uracil and tegafur and cisplatin. Intern Med. 1996;35(12):930–6. https://doi.org/10.2169/internalmedicine.35.930.
Article PubMed CAS Google Scholar
Namikawa T, Marui A, Yokota K, Fujieda Y, Munekage M, Uemura S, et al. Frequency and prognostic impact of cachexia during drug treatment for unresectable advanced gastric cancer patients. Surg Today. 2022;52(11):1560–7. https://doi.org/10.1007/s00595-022-02493-9.
Article PubMed CAS Google Scholar
Fukahori M, Shibata M, Hamauchi S, Kasamatsu E, Machii K. A retrospective cohort study to investigate the incidence of cancer-related weight loss during chemotherapy in gastric cancer patients. Support Care Cancer. 2021;29(1):341–8. https://doi.org/10.1007/s00520-020-05479-w.
Yanagihara K, Kubo T, Iino Y, Mihara K, Morimoto C, Seyama T, et al. Development and characterization of a cancer cachexia model employing a rare human duodenal neuroendocrine carcinoma-originating cell line. Oncotarget. 2019;10(25):2435–50. https://doi.org/10.18632/oncotarget.26764.
Article PubMed PubMed Central Google Scholar
Yanagihara K, Tanaka H, Takigahira M, Ino Y, Yamaguchi Y, Toge T, et al. Establishment of two cell lines from human gastric scirrhous carcinoma that possess the potential to metastasize spontaneously in nude mice. Cancer Sci. 2004;95(7):575–82. https://doi.org/10.1111/j.1349-7006.2004.tb02489.x.
Article PubMed CAS Google Scholar
Ono T, Noguchi R, Yoshimatsu Y, Sin Y, Tsuchiya R, Akiyama T, et al. Establishment and characterization of two novel patient-derived cell lines from giant cell tumor of bone. Hum Cell. 2023;36(5):1804–12. https://doi.org/10.1007/s13577-023-00928-0.
Article PubMed CAS Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article PubMed PubMed Central CAS Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. https://doi.org/10.1101/gr.107524.110.
Article PubMed PubMed Central CAS Google Scholar
Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213–9. https://doi.org/10.1038/nbt.2514.
Article PubMed PubMed Central CAS Google Scholar
Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics. 2012;28(14):1811–7. https://doi.org/10.1093/bioinformatics/bts271.
Article PubMed CAS Google Scholar
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16): e164. https://doi.org/10.1093/nar/gkq603.
Article PubMed PubMed Central CAS Google Scholar
Yang HS, Horten B. Gain of copy number and amplification of the RET gene in lung cancer. Exp Mol Pathol. 2014;97(3):465–9. https://doi.org/10.1016/j.yexmp.2014.10.002.
Article PubMed CAS Google Scholar
Terawaki K, Sawada Y, Kashiwase Y, Hashimoto H, Yoshimura M, Suzuki M, et al. New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line. Am J Physiol Endocrinol Metab. 2014;306(4):E373–87. https://doi.org/10.1152/ajpendo.00116.2013.
Article PubMed CAS Google Scholar
Yanagihara K, Takigahira M, Mihara K, Kubo T, Morimoto C, Morita Y, et al. Inhibitory effects of isoflavones on tumor growth and cachexia in newly established cachectic mouse models carrying human stomach cancers. Nutr Cancer. 2013;65(4):578–89. https://doi.org/10.1080/01635581.2013.776089.
Article PubMed CAS Google Scholar
Terawaki K, Kashiwase Y, Sawada Y, Hashimoto H, Yoshimura M, Ohbuchi K, et al. Development of ghrelin resistance in a cancer cachexia rat model using human gastric cancer-derived 85As2 cells and the palliative effects of the Kampo medicine rikkunshito on the model. PLoS ONE. 2017;12(3): e0173113. https://doi.org/10.1371/journal.pone.0173113.
Article PubMed PubMed Central CAS Google Scholar
Terawaki K, Kashiwase Y, Uzu M, Nonaka M, Sawada Y, Miyano K, et al. Leukemia inhibitory factor via the Toll-like receptor 5 signaling pathway involves aggravation of cachexia induced by human gastric cancer-derived 85As2 cells in rats. Oncotarget. 2018;9(78):34748–64. https://doi.org/10.18632/oncotarget.26190.
Article PubMed PubMed Central Google Scholar
Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16(2):153–66. https://doi.org/10.1016/j.cmet.2012.06.011.
Article PubMed CAS Google Scholar
Waugh DJ, Wilson C. The interleukin-8 pathway in ca
Comments (0)