Teng Y, Lang L, Shay C. ATAD3A on the Path to Cancer. In: Guest PC, editor. reviews on biomarker studies of metabolic and metabolism-related disorders [Internet]. Cham: Springer International Publishing; 2019 [cited 2023 Aug 18]. p. 259–69. http://link.springer.com/https://doi.org/10.1007/978-3-030-12668-1_14
Chen L, Li Y, Zambidis A, Papadopoulos V. ATAD3A: a key regulator of mitochondria-associated diseases. Int J Mol Sci. 2023;24:12511.
Article CAS PubMed PubMed Central Google Scholar
Gilquin B, Taillebourg E, Cherradi N, Hubstenberger A, Gay O, Merle N, et al. The AAA+ ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes. Mol Cell Biol. 2010;30:1984–96.
Article CAS PubMed PubMed Central Google Scholar
He J, Mao C-C, Reyes A, Sembongi H, Di Re M, Granycome C, et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J Cell Biol. 2007;176:141–6.
Article CAS PubMed PubMed Central Google Scholar
Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu Y-T, et al. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 2021;37: 110139.
Article CAS PubMed PubMed Central Google Scholar
Peralta S, Goffart S, Williams SL, Diaz F, Garcia S, Nissanka N, et al. ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cholesterol levels. J Cell Sci. 2018. https://doi.org/10.1242/jcs.217075.
Article PubMed PubMed Central Google Scholar
Zhao Y, Hu D, Wang R, Sun X, Ropelewski P, Hubler Z, et al. ATAD3A oligomerization promotes neuropathology and cognitive deficits in Alzheimer’s disease models. Nat Commun. 2022;13:1121.
Article CAS PubMed PubMed Central Google Scholar
Zhao Y, Sun X, Hu D, Prosdocimo DA, Hoppel C, Jain MK, et al. ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and bioenergetics defects. Nat Commun. 2019;10:1371.
Article PubMed PubMed Central Google Scholar
Goller T, Seibold UK, Kremmer E, Voos W, Kolanus W. Atad3 function is essential for early post-implantation development in the mouse. PLoS ONE. 2013;8: e54799.
Article CAS PubMed PubMed Central Google Scholar
Lang L, Loveless R, Dou J, Lam T, Chen A, Wang F, et al. ATAD3A mediates activation of RAS-independent mitochondrial ERK1/2 signaling, favoring head and neck cancer development. J Exp Clin Cancer Res. 2022;41:43.
Article CAS PubMed PubMed Central Google Scholar
Jin G, Xu C, Zhang X, Long J, Rezaeian AH, Liu C, et al. Atad3a suppresses Pink1-dependent mitophagy to maintain homeostasis of hematopoietic progenitor cells. Nat Immunol. 2018;19:29–40.
Article CAS PubMed Google Scholar
Chen L, Li Y, Sottas C, Lazaris A, Petrillo SK, Metrakos P, et al. Loss of mitochondrial ATPase ATAD3A contributes to nonalcoholic fatty liver disease through accumulation of lipids and damaged mitochondria. J Biol Chem. 2022;298: 102008.
Article CAS PubMed PubMed Central Google Scholar
Brar KK, Hughes DT, Morris JL, Subramanian K, Krishna S, Gao F, et al. PERK-ATAD3A interaction provides a subcellular safe haven for protein synthesis during ER stress. Science. 2024. https://doi.org/10.1126/science.adp7114.
Issop L, Fan J, Lee S, Rone MB, Basu K, Mui J, et al. Mitochondria-associated membrane formation in hormone-stimulated Leydig cell steroidogenesis: role of ATAD3. Endocrinology. 2015;156:334–45.
Peres de Oliveira A, Basei FL, Slepicka PF, de Castro FC, Melo-Hanchuk TD, de Souza EE, et al. K10 interactome and depletion reveal new roles in mitochondria. Proteome Sci. 2020. https://doi.org/10.1002/2211-5463.13108.
Article PubMed PubMed Central Google Scholar
Tawfik CA, Zaitoun R, Farag AA. Harel Yoon syndrome: a novel mutation in ATAD3A gene and expansion of the clinical spectrum. Ophthalmic Genet. 2023;44:226–33.
Article CAS PubMed Google Scholar
Harel T, Yoon WH, Garone C, Gu S, Coban-Akdemir Z, Eldomery MK, et al. Recurrent de novo and biallelic Variation of ATAD3A, encoding a mitochondrial membrane protein, results in distinct neurological syndromes. Am J Hum Genet. 2016;99:831–45.
Article CAS PubMed PubMed Central Google Scholar
Zhang S, Lin L, Li Y, Peng C, Lin Y, Liu Y, et al. Harel-Yoon syndrome caused by a novel variant in ATAD3A: a case report. Heliyon. 2024;10: e23669.
Article CAS PubMed Google Scholar
Qi R, Li R, Yang W, Sang Y. Harel-Yoon syndrome caused by the c.368G>A variant in the ATAD3A gene: a case report. Asian J Surg. 2022;45(1):914–6.
Yap ZY, Park YH, Wortmann SB, Gunning AC, Ezer S, Lee S, et al. Functional interpretation of ATAD3A variants in neuro-mitochondrial phenotypes. Genome Med. 2021;13:55.
Article CAS PubMed PubMed Central Google Scholar
Skopkova M, Stufkova H, Rambani V, Stranecky V, Brennerova K, Kolnikova M, et al. ATAD3A-related pontocerebellar hypoplasia: new patients and insights into phenotypic variability. Orphanet J Rare Dis. 2023;18:92.
Article PubMed PubMed Central Google Scholar
Cooper HM, Yang Y, Ylikallio E, Khairullin R, Woldegebriel R, Lin K-L, et al. ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia. Hum Mol Genet. 2017;26:1432–43.
Article CAS PubMed PubMed Central Google Scholar
Frazier AE, Compton AG, Kishita Y, Hock DH, Welch AE, Amarasekera SSC, et al. Fatal perinatal mitochondrial cardiac failure caused by recurrent de novo duplications in the ATAD3 locus. Med (N Y). 2021;2:49–73.
Desai R, Frazier AE, Durigon R, Patel H, Jones AW, Dalla Rosa I, et al. ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism. Brain. 2017;140:1595–610.
Article PubMed PubMed Central Google Scholar
Peralta S, González-Quintana A, Ybarra M, Delmiro A, Pérez-Pérez R, Docampo J, et al. Novel ATAD3A recessive mutation associated to fatal cerebellar hypoplasia with multiorgan involvement and mitochondrial structural abnormalities. Mol Genet Metab. 2019;128:452–62.
Article CAS PubMed Google Scholar
Ebihara T, Nagatomo T, Sugiyama Y, Tsuruoka T, Osone Y, Shimura M, et al. Severe spinal cord hypoplasia due to a novel ATAD3A compound heterozygous deletion. Mol Genet Metab Rep. 2022;33: 100912.
CAS PubMed PubMed Central Google Scholar
Hanes I, McMillan HJ, Ito Y, Kernohan KD, Lazier J, Lines MA, et al. A splice variant in ATAD3A expands the clinical and genetic spectrum of Harel-Yoon syndrome. Neurol Genet. 2020;6: e452.
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Rong S, Luo H, Huang B, Hu F, Chen M, et al. Ketogenic diet attenuates refractory epilepsy of harel-yoon syndrome with ATAD3A variants: a case report and review of literature. Pediatr Neurol. 2023;143:79–83.
Abdul-Raheem J, Nikkola E, Chen Z, Rohena L. Expanding phenotype of Harel-Yoon syndrome: a case report suggesting a genotype/phenotype correlation. Ame J Med Genet Pt A. 2024. https://doi.org/10.1002/ajmg.a.63647.
Lepelley A, Della Mina E, Van Nieuwenhove E, Waumans L, Fraitag S, Rice GI, et al. Enhanced cGAS-STING-dependent interferon signaling associated with mutations in ATAD3A. J Exp Med. 2021. https://doi.org/10.1084/jem.20201560.
Comments (0)