SIX1 enhances aerobic glycolysis and progression in cervical cancer through ENO1

Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022. Journal of the National Cancer Center. 2024.

Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Update. 2018;38:1–11.

Article  Google Scholar 

Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating glycolysis to improve cancer therapy. Int J Mol Sci. 2023; 24.

Ji L, Shen W, Zhang F, et al. Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1alpha. Cell Mol Biol Lett. 2021;26:19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jing Z, Liu Q, He X, et al. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer. J Exp Clin Cancer Res. 2022;41:198.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Peng J, Li B, et al. HOXA1 promotes aerobic glycolysis and cancer progression in cervical cancer. Cell Signal. 2023;109: 110747.

Article  CAS  PubMed  Google Scholar 

Shokouhian B, Negahdari B, Heydari Z, et al. HNF4alpha is possibly the missing link between epithelial-mesenchymal transition and Warburg effect during hepatocarcinogenesis. Cancer Sci. 2023;114:1337–52.

Article  CAS  PubMed  Google Scholar 

Dai W, Meng X, Mo S, et al. FOXE1 represses cell proliferation and Warburg effect by inhibiting HK2 in colorectal cancer. Cell Commun Signal. 2020;18:7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Liang Y, Kang L, et al. Transcriptional regulation of the Warburg effect in cancer by SIX1. Cancer Cell. 2018;33:368–85.

Article  CAS  PubMed  Google Scholar 

Huang S, Hu J, Hu M, et al. Cooperation between SIX1 and DHX9 transcriptionally regulates integrin-focal adhesion signaling mediated metastasis and sunitinib resistance in KIRC. Oncogene. 2024;43:2951–69.

Article  CAS  PubMed  Google Scholar 

Zeng J, Shi R, Cai CX, et al. Increased expression of Six1 correlates with progression and prognosis of prostate cancer. Cancer Cell Int. 2015;15:63.

Article  PubMed  PubMed Central  Google Scholar 

Guo L, Li F, Liu H, Kong D, Chen C, Sun S. SIX1 amplification modulates stemness and tumorigenesis in breast cancer. J Transl Med. 2023;21:866.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ono H, Imoto I, Kozaki K, et al. SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene. 2012;31:4923–34.

Article  CAS  PubMed  Google Scholar 

Yu C, Zhang B, Li YL, Yu XR. SIX1 reduces the expression of PTEN via activating PI3K/AKT signal to promote cell proliferation and tumorigenesis in osteosarcoma. Biomed Pharmacother. 2018;105:10–7.

Article  CAS  PubMed  Google Scholar 

Zheng XH, Liang PH, Guo JX, et al. Expression and clinical implications of homeobox gene Six1 in cervical cancer cell lines and cervical epithelial tissues. Int J Gynecol Cancer. 2010;20:1587–92.

PubMed  Google Scholar 

Suen AA, Jefferson WN, Wood CE, Padilla-Banks E, Bae-Jump VL, Williams CJ. SIX1 oncoprotein as a biomarker in a model of hormonal carcinogenesis and in human endometrial cancer. Mol Cancer Res. 2016;14:849–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chu Y, Jiang M, Wu N, et al. O-GlcNAcylation of SIX1 enhances its stability and promotes Hepatocellular Carcinoma Proliferation. Theranostics. 2020;10:9830–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu D, Li L, Zhang XX, et al. SIX1 promotes tumor lymphangiogenesis by coordinating TGFbeta signals that increase expression of VEGF-C. Cancer Res. 2014;74:5597–607.

Article  CAS  PubMed  Google Scholar 

Coletta RD, Christensen K, Reichenberger KJ, et al. The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci USA. 2004;101:6478–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iwanaga R, Wang CA, Micalizzi DS, et al. Expression of Six1 in luminal breast cancers predicts poor prognosis and promotes increases in tumor initiating cells by activation of extracellular signal-regulated kinase and transforming growth factor-beta signaling pathways. Breast Cancer Res. 2012;14:R100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Xue W, Ouyang W, Jiang X, Jiang X. miR-23a-3p/SIX1 regulates glucose uptake and proliferation through GLUT3 in head and neck squamous cell carcinomas. J Cancer. 2020;11:2529–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun M, Li L, Niu Y, et al. PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism. Acta Pharm Sin B. 2023;13:157–73.

Article  CAS  PubMed  Google Scholar 

Li HJ, Ke FY, Lin CC, et al. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling-driven epithelial-to-mesenchymal transition. Cancer Res. 2021;81:4094–109.

Article  CAS  PubMed  Google Scholar 

Mohapatra P, Shriwas O, Mohanty S, et al. CMTM6 drives cisplatin resistance by regulating Wnt signaling through the ENO-1/AKT/GSK3beta axis. JCI Insight. 2021; 6.

Li Y, Li Y, Luo J, et al. FAM126A interacted with ENO1 mediates proliferation and metastasis in pancreatic cancer via PI3K/AKT signaling pathway. Cell Death Discov. 2022;8:248.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duska LR, Podwika SE, Randall LM. Top advances of the year: cervical cancer. Cancer-Am Cancer Soc. 2024;130:2571–6.

Google Scholar 

Comments (0)

No login
gif