Meltzer PS, Helman LJ. New horizons in the treatment of osteosarcoma. N Engl J Med. 2021;385:2066–76. https://doi.org/10.1056/NEJMra2103423.
Article CAS PubMed Google Scholar
Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett. 2021. https://doi.org/10.1186/s11658-021-00282-9.
Article PubMed PubMed Central Google Scholar
Bian ZJ, Shan HJ, Zhu YR, Shi C, Chen MB, Huang YM, Wang XD, Zhou XZ, Cao C. Identification of Gαi3 as a promising target for osteosarcoma treatment. Int J Biol Sci. 2022. https://doi.org/10.7150/ijbs.68861.
Article PubMed PubMed Central Google Scholar
Bao Z, Zhu R, Fan H, Ye Y, Li T, Chai D. Aberrant expression of SPAG6 and NM23 predicts poor prognosis of human osteosarcoma. Front Genet. 2022;13:1012548. https://doi.org/10.3389/fgene.2022.1012548.
Article CAS PubMed PubMed Central Google Scholar
Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma—connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13:480–91. https://doi.org/10.1038/nrendo.2017.16.
Article CAS PubMed Google Scholar
Tang Z, Dong H, Li T, Wang N, Wei X, Wu H, Liu Y, Wang W, Guo Z, Xiao X. The synergistic reducing drug resistance effect of cisplatin and ursolic acid on osteosarcoma through a multistep mechanism involving ferritinophagy. Oxid Med Cell Longev. 2021;2021:5192271. https://doi.org/10.1155/2021/5192271.
Article CAS PubMed PubMed Central Google Scholar
Yu SN, Yao XD. Advances on immunotherapy for osteosarcoma. Mol Cancer. 2024. https://doi.org/10.1186/s12943-024-02105-9.
Article PubMed PubMed Central Google Scholar
Ogasawara Y, Cheng JL, Tatematsu T, Uchida M, Murase O, Yoshikawa S, Ohsaki Y, Fujimoto T. Long-term autophagy is sustained by activation of CCTβ3 on lipid droplets. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-18153-w.
Article PubMed PubMed Central Google Scholar
Pan Z, Cheng DD, Wei XJ, Li SJ, Guo H, Yang QC. Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma. Carbohydr Polym. 2021. https://doi.org/10.1016/j.carbpol.2020.117596.
Huang X, Zhang WY, Pu FF, Zhang ZC. LncRNA MEG3 promotes chemosensitivity of osteosarcoma by regulating antitumor immunity via miR-21-5p/p53 pathway and autophagy. Genes Dis. 2023;10:531–41. https://doi.org/10.1016/j.gendis.2021.11.004.
Article CAS PubMed Google Scholar
Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19:373–9. https://doi.org/10.1016/j.cmet.2014.01.001.
Article CAS PubMed PubMed Central Google Scholar
Ge YX, Zhang TW, Zhou L, Ding W, Liang HF, Hu ZC, Chen Q, Dong J, Xue FF, Yin XF, Jiang LB. Enhancement of anti-PD-1/PD-L1 immunotherapy for osteosarcoma using an intelligent autophagy-controlling metal organic framework. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2022.121407.
Zhu ZW, Huang F, Jiang YC, Ruan SH, Liu MH, Zhang YJ, Li YC, Chen JB, Cui Y, Chen ZY, Chen HQ, Zeng F. OLMALINC/OCT4/BMP2 axis enhances osteogenic-like phenotype of renal interstitial fibroblasts to participate in Randall’s plaque formation. Mol Med. 2022. https://doi.org/10.1186/s10020-022-00576-4.
Article PubMed PubMed Central Google Scholar
Shuai ZQ, Wang ZX, Ren JL, Yang XK, Xu B. Differential expressions and potential clinical values of lncRNAs in the plasma exosomes of rheumatoid arthritis. Int Immunopharmacol. 2024. https://doi.org/10.1016/j.intimp.2024.111511.
Yu B, Liu L, Cai F, Peng YX, Tang XF, Zeng D, Li T, Zhang FF, Liang YP, Yuan XH, Li JY, Dai ZZ, Liao Q, Lv XB. The synergistic anticancer effect of the bromodomain inhibitor OTX015 and histone deacetylase 6 inhibitor WT-161 in osteosarcoma. Cancer Cell Int. 2022. https://doi.org/10.1186/s12935-022-02443-y.
Article PubMed PubMed Central Google Scholar
Zhang XM, Zheng J, Yan YQ, Ruan Z, Su YJ, Wang J, Huang HH, Zhang Y, Wang WJ, Gao JJ, Chi YF, Lu XQ, Liu ZW. Angiotensin-converting enzyme 2 regulates autophagy in acute lung injury through AMPK/mTOR signaling. Arch Biochem Biophys. 2019. https://doi.org/10.1016/j.abb.2019.07.026.
Benhammou JN, Ko A, Alvarez M, Kaikkonen MU, Rankin C, Garske KM, Padua D, Bhagat Y, Kaminska D, Kärjä V, Pihlajamaki J, Pisegna JR, Pajukant P. Novel lipid long intervening noncoding RNA, oligodendrocyte maturation-associated long intergenic noncoding RNA, regulates the liver steatosis gene stearoyl-coenzyme a desaturase as an enhancer RNA. Hepatol Commun. 2019;3:1356–72. https://doi.org/10.1002/hep4.1413.
Article CAS PubMed PubMed Central Google Scholar
Devis-Jauregui L, Eritja N, Davis ML, Matias-Guiu X, Llobet-Navàs D. Autophagy in the physiological endometrium and cancer. Autophagy. 2021;17:1077–95. https://doi.org/10.1080/15548627.2020.1752548.
Article CAS PubMed Google Scholar
Gu CY, Lin C, Zhu Z, Hu L, Wang FX, Wang XH, Ruan JP, Zhao XY, Huang S. The IFN-γ-related long non-coding RNA signature predicts prognosis and indicates immune microenvironment infiltration in uterine corpus endometrial carcinoma. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.955979.
Article PubMed PubMed Central Google Scholar
Gupta S, Silveira DA, Mombach JCM. Towards DNA-damage induced autophagy: a Boolean model of p53-induced cell fate mechanisms. DNA Repair (Amst). 2020;96: 102971. https://doi.org/10.1016/j.dnarep.2020.102971.
Article CAS PubMed Google Scholar
Wang Y, Fu YQ, Lu YY, Chen SW, Zhang J, Liu B, Yuan Y. Unravelling the complexity of lncRNAs in autophagy to improve potential cancer therapy. Biochim Biophys Acta Rev Cancer. 2023. https://doi.org/10.1016/j.bbcan.2023.188932.
Article PubMed PubMed Central Google Scholar
Xin XR, Wu MY, Meng QY, Wang C, Lu YA, Yang YX, Li XN, Zheng QD, Pu H, Gui X, Li TM, Li J, Jia S, Lu DD. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a. Mol Cancer. 2018. https://doi.org/10.1186/s12943-018-0843-8.
Article PubMed PubMed Central Google Scholar
Lim KS, Li H, Roberts EA, Gaudiano EF, Clairmont C, Sambel LA, Ponnienselvan K, Liu JC, Yang CY, Kozono D, Parmar K, Yusufzai T, Zheng N, D’Andrea AD. USP1 is required for replication fork protection in BRCA1-deficient tumors. Mol Cell. 2018. https://doi.org/10.1016/j.molcel.2018.10.045.
Article PubMed PubMed Central Google Scholar
Li XY, Wu JC, Liu P, Li ZJ, Wang Y, Chen BY, Hu CL, Fei MY, Yu PC, Jiang YL, Xu CH, Chang BH, Chen XC, Zong LJ, Zhang JY, Fang Y, Sun XJ, Xue K, Wang L, Chen SB, Jiang SY, Gui AL, Yang L, Gu JJ, Yu BH, Zhang QL, Wang L. Inhibition of USP1 reverses the chemotherapy resistance through destabilization of MAX in the relapsed/refractory B-cell lymphoma. Leukemia. 2023;37:164–77. https://doi.org/10.1038/s41375-022-01747-2.
Article CAS PubMed Google Scholar
Wang LH, Hu T, Shen ZB, Zheng YY, Geng QS, Li LF, Sha BB, Li MM, Sun YX, Guo YJ, Xue WH, Xuan D, Chen P, Zhao J. Inhibition of USP1 activates ER stress through Ubi-protein aggregation to induce autophagy and apoptosis in HCC. Cell Death Dis. 2022. https://doi.org/10.1038/s41419-022-05341-3.
Article PubMed PubMed Central Google Scholar
Sun YX, Sha BB, Huang WJ, Li MM, Zhao S, Zhang Y, Yan J, Li Z, Tang JW, Duan PY, Shi JX, Li P, Hu T, Chen P. ML323, a USP1 inhibitor triggers cell cycle arrest, apoptosis and autophagy in esophageal squamous cell carcinoma cells. Apoptosis. 2022;27:545–60. https://doi.org/10.1007/s10495-022-01736-x.
Article CAS PubMed Google Scholar
Williams SA, Maecker HL, French DM, Liu JF, Gregg A, Silverstein LB, Cao TC, Carano RAD, Dixit VM. USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell. 2011.
Comments (0)