Sunitinib-resistant renal cell carcinoma cell-derived exosomes promote facilitation of tumor progression via secretion of the lncRNA SNHG16

Marko J, Craig R, Nguyen A, Udager AM, Wolfman DJ. Chromophobe renal cell carcinoma with radiologic-pathologic correlation. Radiographics. 2021;41(5):1408–19. https://doi.org/10.1148/rg.2021200206.

Article  PubMed  Google Scholar 

Zhang W, Zheng X, Yu Y, et al. Renal cell carcinoma-derived exosomes deliver lncARSR to induce macrophage polarization and promote tumor progression via STAT3 pathway. Int J Biol Sci. 2022;18(8):3209–22. https://doi.org/10.7150/ijbs.70289.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Capitanio U, Bensalah K, Bex A, et al. Epidemiology of renal cell carcinoma. Eur Urol. 2019;75(1):74–84. https://doi.org/10.1016/j.eururo.2018.08.036.

Article  PubMed  Google Scholar 

Li YZ, Zhu HC, Du Y, Zhao HC, Wang L. Silencing lncRNA SLC16A1-AS1 induced ferroptosis in renal cell carcinoma through miR-143-3p/SLC7A11 signaling. Technol Cancer Res Treat. 2022;21:15330338221077804. https://doi.org/10.1177/15330338221077803.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Padala SA and Kallam A. Clear Cell Renal Carcinoma, in StatPearls. 2024, StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies. Disclosure: Avyakta Kallam declares no relevant financial relationships with ineligible companies. (2024)

Kumbla RA, Figlin RA, Posadas EM. recent advances in the medical treatment of recurrent or metastatic renal cell cancer. Drugs. 2017;77(1):17–28. https://doi.org/10.1007/s40265-016-0665-1.

Article  PubMed  CAS  Google Scholar 

Xiong L, Zhang Y, Wang J, et al. Novel small molecule inhibitors targeting renal cell carcinoma: status, challenges, future directions. Eur J Med Chem. 2024;267: 116158. https://doi.org/10.1016/j.ejmech.2024.116158.

Article  PubMed  CAS  Google Scholar 

Boussios S, Devo P, Goodall ICA, et al. Exosomes in the diagnosis and treatment of renal cell cancer. Int J Mol Sci. 2023;24(18):14356. https://doi.org/10.3390/ijms241814356.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brown JE, Royle KL, Gregory W, et al. Temporary treatment cessation versus continuation of first-line tyrosine kinase inhibitor in patients with advanced clear cell renal cell carcinoma (STAR): an open-label, non-inferiority, randomised, controlled, phase 2/3 trial. Lancet Oncol. 2023;24(3):213–27. https://doi.org/10.1016/s1470-2045(22)00793-8.

Article  PubMed  CAS  Google Scholar 

Jin J, Xie Y, Zhang JS, et al. Sunitinib resistance in renal cell carcinoma: from molecular mechanisms to predictive biomarkers. Drug Resist Updat. 2023;67: 100929. https://doi.org/10.1016/j.drup.2023.100929.

Article  PubMed  CAS  Google Scholar 

Ferrari SM, Centanni M, Virili C, et al. Sunitinib in the treatment of thyroid cancer. Curr Med Chem. 2019;26(6):963–72. https://doi.org/10.2174/0929867324666171006165942.

Article  PubMed  CAS  Google Scholar 

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020. https://doi.org/10.1126/science.aau6977.

Article  PubMed  PubMed Central  Google Scholar 

Zhu L, Sun HT, Wang S, et al. Isolation and characterization of exosomes for cancer research. J Hematol Oncol. 2020;13(1):152. https://doi.org/10.1186/s13045-020-00987-y.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kok VC, Yu CC. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomed. 2020;15:8019–36. https://doi.org/10.2147/ijn.S272378.

Article  CAS  Google Scholar 

Xuan Z, Chen C, Tang W, et al. TKI-resistant renal cancer secretes low-level exosomal miR-549a to induce vascular permeability and angiogenesis to promote tumor metastasis. Front Cell Dev Biol. 2021;9: 689947. https://doi.org/10.3389/fcell.2021.689947.

Article  PubMed  PubMed Central  Google Scholar 

Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell. 2016;29(5):653–68. https://doi.org/10.1016/j.ccell.2016.03.004.

Article  PubMed  CAS  Google Scholar 

Liu Q, Zhao E, Geng B, et al. Tumor-associated macrophage-derived exosomes transmitting miR-193a-5p promote the progression of renal cell carcinoma via TIMP2-dependent vasculogenic mimicry. Cell Death Dis. 2022;13(4):382. https://doi.org/10.1038/s41419-022-04814-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang X, Wang J, Guan J, et al. Exosomal Circsafb2 reshaping tumor environment to promote renal cell carcinoma progression by mediating M2 macrophage polarization. Front Oncol. 2022;12: 808888. https://doi.org/10.3389/fonc.2022.808888.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tsuruda M, Yoshino H, Okamura S, et al. Oncogenic effects of RAB27B through exosome independent function in renal cell carcinoma including sunitinib-resistant. PLoS ONE. 2020;15(5): e0232545. https://doi.org/10.1371/journal.pone.0232545.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xie H, Yao J, Wang Y, Ni B. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022;29(1):1257–71. https://doi.org/10.1080/10717544.2022.2057617.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pokorná M, Černá M, Boussios S, Ovsepian SV, O’Leary VB. lncRNA biomarkers of glioblastoma multiforme. Biomedicines. 2024. https://doi.org/10.3390/biomedicines12050932.

Article  PubMed  PubMed Central  Google Scholar 

Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47. https://doi.org/10.1038/s41580-022-00566-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol. 2024;25(5):396–415. https://doi.org/10.1038/s41580-023-00694-9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu F, Ji S, Yang L, Li Y, Shen P. Potential upstream lncRNA-miRNA-mRNA regulatory network of the ferroptosis-related gene SLC7A11 in renal cell carcinoma. Transl Androl Urol. 2023;12(1):33–57. https://doi.org/10.21037/tau-22-663.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheng T, Shuang W, Ye D, et al. SNHG16 promotes cell proliferation and inhibits cell apoptosis via regulation of the miR-1303-p/STARD9 axis in clear cell renal cell carcinoma. Cell Signal. 2021;84: 110013. https://doi.org/10.1016/j.cellsig.2021.110013.

Article  PubMed  CAS  Google Scholar 

Ma J, Wang W, Azhati B, Wang Y, Tusong H. miR-106a-5p functions as a tumor suppressor by targeting VEGFA in renal cell carcinoma. Dis Markers. 2020;2020:8837941. https://doi.org/10.1155/2020/8837941.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ding Y, Gao S, Zheng J, Chen X. Blocking lncRNA-SNHG16 sensitizes gastric cancer cells to 5-Fu through targeting the miR-506-3p-PTBP1-mediated glucose metabolism. Cancer Metab. 2022;10(1):20. https://doi.org/10.1186/s40170-022-00293-w.

Article  PubMed  PubMed Central  Google Scholar 

Li S, Qi Y, Huang Y, Guo Y, Huang T, Jia L. Exosome-derived SNHG16 sponging miR-4500 activates HUVEC angiogenesis by targeting GALNT1 via PI3K/Akt/mTOR pathway in hepatocellular carcinoma. J Physiol Biochem. 2021;77(4):667–82. https://doi.org/10.1007/s13105-021-00833-w.

Comments (0)

No login
gif