Alesi M, Bianco A, Luppina G, Palma A, Pepi A. Improving children’s coordinative skills and executive functions: the effects of a football exercise program. Percept Mot Skills. 2016;122(1):27–46. https://doi.org/10.1177/0031512515627527.
Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):1940–3. https://doi.org/10.1126/science.275.5308.1940.
Article CAS PubMed Google Scholar
Akshoomoff NA, Courchesne E. ERP evidence for a shifting attention deficit in patients with damage to the cerebellum. J Cogn Neurosci. 1994;6(4):388–99. https://doi.org/10.1162/jocn.1994.6.4.388.
Article CAS PubMed Google Scholar
Amad A, Seidman J, Draper SB, Bruchhage MMK, Lowry RG, Wheeler J, Robertson A, Williams SCR, Smith MS. Motor learning induces plasticity in the resting brain—drumming up a connection. Cereb Cortex. 2016. https://doi.org/10.1093/cercor/bhw048.
Baillieux H, De Smet HJ, Paquier P, Paul D, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110:763–73. https://doi.org/10.1016/j.clineuro.2008.05.013.
Bhattacharjee S, Kashyap R, Abualait T, Chen S-HA, Yoo W-K, Bashir S. The role of primary motor cortex: more than movement execution. J Motor Behav. 2021. https://doi.org/10.1080/00222895.2020.1738992.
du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Samson Y, Zhang S, Dubois B. Functions of the left superior frontal gyrus in humans: a lesion study. Brain. 2006;129(12):3315–28. https://doi.org/10.1093/brain/awl244.
Brissenden JA, Levin EJ, Osher DE, Halko MA, Somers DC. Functional evidence for a cerebellar node of the dorsal attention network. J Neurosci. 2016;36(22):6083–96. https://doi.org/10.1523/JNEUROSCI.0344-16.2016.
Article CAS PubMed PubMed Central Google Scholar
Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29(6):1860–73. https://doi.org/10.1523/JNEUROSCI.5062-08.2009.
Article CAS PubMed PubMed Central Google Scholar
Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15. https://doi.org/10.1016/j.neuron.2013.10.044.
Article CAS PubMed Google Scholar
Calmels C. Neural correlates of motor expertise: extensive motor training and cortical changes. Brain Res. 2020;1739:146323. https://doi.org/10.1016/j.brainres.2019.146323.
Article CAS PubMed Google Scholar
Cantou P, Platel H, Desgranges B, Groussard M How motor, cognitive and musical expertise shapes the brain: Focus on fMRI and EEG resting-state functional connectivity. J Chem Neuroanat. 2018;89:60–68. https://doi.org/10.1016/j.jchemneu.2017.08.003.
Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(3):564–83. https://doi.org/10.1093/brain/awl004.
Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15. https://doi.org/10.1038/nrn755.
Article CAS PubMed Google Scholar
Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Courchesne R, Lincoln AJ, James HE, Haas RH, Schreibman L, Lau L. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994;108(5):848–65. https://doi.org/10.1037/0735-7044.108.5.848.
Article CAS PubMed Google Scholar
Dadario NB, Sughrue ME. The functional role of the precuneus. Brain. 2023;146(9):3598–607. https://doi.org/10.1093/brain/awad181.
Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443–54. https://doi.org/10.1016/j.neuron.2011.10.008.
Article CAS PubMed PubMed Central Google Scholar
Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18(1):193–222.
Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9. https://doi.org/10.1152/jn.00626.2002.
Engel AK, Maye A, Kurthen M, König P. Where’s the action? The pragmatic turn in cognitive science. Trends Cogn Sci. 2013;17(5):202–9. https://doi.org/10.1016/j.tics.2013.03.006.
Fan J, Gu X, Guise KG, Liu X, Fossella J, Wang H, Posner MI. Testing the behavioral interaction and integration of attentional networks. Brain Cogn. 2009;70(2):209–20. https://doi.org/10.1016/j.bandc.2009.02.002.
Article PubMed PubMed Central Google Scholar
Fan J, Mccandliss B, Sommer T, Raz A, Posner M. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14:340–7. https://doi.org/10.1162/089892902317361886.
Fernandez L, Rogasch NC, Do M, Clark G, Major BP, Teo W-P, Byrne LK, Enticott PG. Cerebral cortical activity following non-invasive cerebellar stimulation—a systematic review of combined TMS and EEG studies. Cerebellum. 2020;19(2):309–35. https://doi.org/10.1007/s12311-019-01093-7.
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci. 2005;102(27):9673–8. https://doi.org/10.1073/pnas.0504136102.
Article CAS PubMed PubMed Central Google Scholar
Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13(1):5–14. https://doi.org/10.1038/jcbfm.1993.4.
Article CAS PubMed Google Scholar
Galashan D, Siemann J. Differences and similarities for spatial and feature-based selective attentional orienting. Front Neurosci. 2017. https://doi.org/10.3389/fnins.2017.00283.
Article PubMed PubMed Central Google Scholar
Guo CC, Kurth F, Zhou J, Mayer EA, Eickhoff SB, Kramer JH, Seeley WW. One-year test–retest reliability of intrinsic connectivity network fMRI in older adults. NeuroImage 2012;61(4):1471–83. https://doi.org/10.1016/j.neuroimage.2012.03.027.
Hardwick RM, Rottschy C, Miall RC, Eickhoff SB. A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage. 2013;67:283–97. https://doi.org/10.1016/j.neuroimage.2012.11.020.
Hortobágyi T, Vetrovsky T, Balbim GM, Sorte Silva NCB, Manca A, Deriu F, Kolmos M, Kruuse C, Liu-Ambrose T, Radák Z, Váczi M, Johansson H, dos Santos PCR, Franzén E, Granacher U. The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Res Rev. 2022;80:101698. https://doi.org/10.1016/j.arr.2022.101698.
Article CAS PubMed Google Scholar
He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A. Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 2009;132(12):3366–79. https://doi.org/10.1093/brain/awp089.
Hüttermann S, Memmert D, Simons DJ. The size and shape of the attentional “spotlight” varies with differences in sports expertise. J Exp Psychol Appl. 2014;20(2):147–57. https://doi.org/10.1037/xap0000012.
Jin X, Chen S, Qi Y, Zhou Q, Wang J, Wang Y, Zhou C. Differential resting-state brain characteristics of skeleton athletes and non-athletes: a preliminary resting-state fMRI study. Brain Sci. 2024;14(10): 10. https://doi.org/10.3390/brainsci14101016.
Comments (0)