Cofilin linked to GluN2B subunits of NMDA receptors is required for behavioral sensitization by changing the dendritic spines of neurons in the caudate and putamen after repeated nicotine exposure

Stolerman IP, Jarvis MJ. The scientific case that nicotine is addictive. Psychopharmacology. 1995;117:2–20. https://doi.org/10.1007/BF02245088.

Article  CAS  PubMed  Google Scholar 

Le Foll B, Goldberg SR. Nicotine as a typical drug of abuse in experimental animals and humans. Psychopharmacology. 2006;184:367–81. https://doi.org/10.1007/s00213-005-0155-8.

Article  CAS  PubMed  Google Scholar 

D’Souza MS, Markou A. Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract. 2011;6(1):4–16.

PubMed Central  PubMed  Google Scholar 

Robinson TE, Kolb B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology. 2004;47(Suppl 1):33–46. https://doi.org/10.1016/j.neuropharm.2004.06.025.

Article  CAS  PubMed  Google Scholar 

Jones S, Bonci A. Synaptic plasticity and drug addiction. Curr Opin Pharmacol. 2005;5(1):20–5. https://doi.org/10.1016/j.coph.2004.08.011.

Article  CAS  PubMed  Google Scholar 

Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci. 2006;29:565–98. https://doi.org/10.1146/annurev.neuro.29.051605.113009.

Article  CAS  PubMed  Google Scholar 

Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat Rev Neurosci. 2007;8(11):844–58. https://doi.org/10.1038/nrn2234.

Article  CAS  PubMed  Google Scholar 

Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010;33(6):267–76. https://doi.org/10.1016/j.tins.2010.02.002.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Dani JA, De Biasi M. Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav. 2001;70(4):439–46. https://doi.org/10.1016/s0091-3057(01)00652-9.

Article  CAS  PubMed  Google Scholar 

Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7:464–76. https://doi.org/10.1038/nrn1919.

Article  CAS  PubMed  Google Scholar 

Changeux JP. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci. 2010;11:389–401. https://doi.org/10.1038/nrn2849.

Article  CAS  PubMed  Google Scholar 

Ryu IS, Kim J, Seo SY, Yang JH, Oh JH, Lee DK, Cho HW, Yoon SS, Seo JW, Chang S, Kim HY, Shim I, Choe ES. Behavioral changes after nicotine challenge are associated with α7 nicotinic acetylcholine receptor-stimulated glutamate release in the rat dorsal striatum. Sci Rep. 2017;7:15009. https://doi.org/10.1038/s41598-017-15161-7.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kim S, Sohn S, Ryu IS, Yang JH, Kim OH, Kim JS, Kim YH, Jang EY, Choe ES. Nicotine Rather Than Non-nicotine substances in 3R4F WCSC increases behavioral sensitization and drug-taking behavior in rats. Nicotine Tob Res. 2022;24(8):1201–7. https://doi.org/10.1093/ntr/ntac063.

Article  CAS  PubMed  Google Scholar 

Schwabe L, Dickinson A, Wolf OT. Stress, habits, and drug addiction: a psychoneuroendocrinological perspective. Exp Clin Psychopharmacol. 2011;19(1):53–63. https://doi.org/10.1037/a0022212.

Article  PubMed  Google Scholar 

Adermark L, Morud J, Lotfi A, Danielsson K, Ulenius L, Söderpalm B, Ericson M. Temporal rewiring of Striatal Circuits initiated by Nicotine. Neuropsychopharmacology. 2016;41(13):3051–9. https://doi.org/10.1038/npp.2016.118.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Ehlinger DG, Burke JC, McDonald CG, Smith RF, Bergstrom HC. Nicotine-induced and D1-receptor-dependent dendritic remodeling in a subset of dorsolateral striatum medium spiny neurons. Neuroscience. 2017;356:242–54. https://doi.org/10.1016/j.neuroscience.2017.05.036.

Article  CAS  PubMed  Google Scholar 

Xia J, Meyers AM, Beeler JA. Chronic nicotine alters corticostriatal plasticity in the Striatopallidal pathway mediated by NR2B-Containing Silent synapses. Neuropsychopharmacology. 2017;42(12):2314–24. https://doi.org/10.1038/npp.2017.87.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 1997;136(6):1307–22. https://doi.org/10.1083/jcb.136.6.1307.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Bamburg JR. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999;15:185–230. https://doi.org/10.1146/annurev.cellbio.15.1.185.

Article  CAS  PubMed  Google Scholar 

Racz B, Weinberg RJ. Spatial organization of cofilin in dendritic spines. Neuroscience. 2006;138(2):447–56. https://doi.org/10.1016/j.neuroscience.2005.11.025.

Article  CAS  PubMed  Google Scholar 

Lappalainen P, Drubin DG. (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature. 1997;388(6637):78–82. https://doi.org/10.1038/40418

Dietz DM, Sun H, Lobo MK, Cahill ME, Chadwick B, Gao V, Koo JW, Mazei-Robison MS, Dias C, Maze I, Damez-Werno D, Dietz KC, Scobie KN, Ferguson D, Christoffel D, Ohnishi Y, Hodes GE, Zheng Y, Neve RL, Hahn KM, Russo SJ, Nestler EJ. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat Neurosci. 2012;15(6):891–6. https://doi.org/10.1038/nn.3094.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kruyer A, Ball LE, Townsend DM, Kalivas PW, Uys JD. Post-translational S-glutathionylation of cofilin increases actin cycling during cocaine seeking. PLoS ONE. 2019;14(9):e0223037. https://doi.org/10.1371/journal.pone.0223037.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Rigoni D, Avalos MP, Boezio MJ, Guzmán AS, Calfa GD, Perassi EM, Pierotti SM, Bisbal M, Garcia-Keller C, Cancela LM, Bollati F. Stress-induced vulnerability to develop cocaine addiction depends on cofilin modulation. Neurobiol Stress. 2021;15:100349. https://doi.org/10.1016/j.ynstr.2021.100349.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Toda S, Shen H, Kalivas PW. Inhibition of actin polymerization prevents cocaine-induced changes in spine morphology in the nucleus accumbens. Neurotox Res. 2010;18:410–5. https://doi.org/10.1007/s12640-010-9193-z.

Article  CAS  PubMed  Google Scholar 

Shoji K, Ohashi K, Sampei K, Oikawa M, Mizuno K. Cytochalasin D acts as an inhibitor of the actin-cofilin interaction. Biochem Biophys Res Commun. 2012;424(1):52–7. https://doi.org/10.1016/j.bbrc.2012.06.063.

Article  CAS  PubMed  Google Scholar 

Mantzur L, Joels G, Lamprecht R. Actin polymerization in lateral amygdala is essential for fear memory formation. Neurobiol Learn Mem. 2009;91(1):85–8. https://doi.org/10.1016/j.nlm.2008.09.001.

Article  CAS  PubMed  Google Scholar 

Go BS, Barry SM, McGinty JF. Glutamatergic neurotransmission in the prefrontal cortex mediates the suppressive effect of intra-prelimbic cortical infusion of BDNF on cocaine-seeking. Eur Neuropsychopharmacol. 2016;26(12):1989–99. https://doi.org/10.1016/j.euroneuro.2016.10.002.

Comments (0)

No login
gif