Fluoride Exposure Increases the Activity of the Cystine/Glutamate Exchanger in Glia Cells

Jia H, Qian H, Qu W, Zheng L, Feng W, Ren W (2019) Fluoride occurrence and human health risk in drinking water wells from southern edge of chinese loess plateau. Int J Environ Res Public Health 16(10):14. https://doi.org/10.3390/ijerph16101683

Article  CAS  Google Scholar 

W. H. Organization, WHO recommendations on child health: guidelines approved by the WHO guidelines review committee, World Health Organization, 2017.

Basha PM, Rai P, Begum S (2011) Evaluation of fluoride-induced oxidative stress in rat brain: a multigeneration study. Biol Trace Elem Res 142:623–637

Article  CAS  PubMed  Google Scholar 

Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I (2023) Fluoride in the central nervous system and its potential influence on the development and invasiveness of brain tumours-a research hypothesis. Int J Mol Sci. https://doi.org/10.3390/ijms24021558

Article  PubMed  PubMed Central  Google Scholar 

G. Philippe, Developmental fluoride neurotoxicity : an updated review, pp. 1–17 , publisher = Environmental Health, 2019.

Harsheema Ottappilakkil P, Babu S, Balasubramanian S, Manoharan S, Ekambaram (2022) Fluoride Induced Neurobehavioral Impairments in experimental animals: a brief review. Biol Trace Element Res. https://doi.org/10.1007/s12011-022-03242-2

Article  Google Scholar 

WHO, "A global overview of national regulations and standards for drinking-water quality.," ed. World Health Organization, Geneva, 2021.

M. Alfaro, M. Ortiz, M. Alarcón, C. Martínez, and J. Ledón, Inventario nacional de calidad del agua. arsénico y fluoruro en agua: riesgos y perspectivas desde la sociedad civil y la academia en México (no. Chapter 2). 2018.

Grandjean P, Landrigan J (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13:330–338. https://doi.org/10.1016/S1474-4422(13)70278-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dec K et al (2019) Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures. Neurotoxicology 74:81–90. https://doi.org/10.1016/j.neuro.2019.06.001

Article  CAS  PubMed  Google Scholar 

Inkielewicz I, Krechniak J (2003) Fluoride content in soft tissues and urine of rats exposed to sodium fluoride in drinking water. Fluoride 36:263–266

CAS  Google Scholar 

Bittencourt LO et al (2023) Prolonged exposure to high fluoride levels during adolescence to adulthood elicits molecular, morphological, and functional impairments in the hippocampus. Sci Rep 13(1):11083. https://doi.org/10.1038/s41598-023-38096-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inkielewicz I, Krechniak J (2003) Fluoride content in soft tissues and urine of rats exposed to sodium fluoride in drinking water. Fluoride 36(4):263–266

CAS  Google Scholar 

Agalakova NI, Nadei OV (2020) Inorganic fluoride and functions of brain. Crit Rev Toxicol 50(1):28–46. https://doi.org/10.1080/10408444.2020.1722061

Article  CAS  PubMed  Google Scholar 

García-López A, Hernández-Castillo J, Hernández-Kelly L, Olivares-Bañuelos A, Ortega A (2020) Fluoride exposure affects glutamine uptake in müller glia cells. Neurotox Res 38:765–774. https://doi.org/10.1007/s12640-020-00263-4

Article  CAS  PubMed  Google Scholar 

Srivastava S, Flora SJS (2020) Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr Environ Health Rep 7(2):140–146. https://doi.org/10.1007/s40572-020-00270-9

Article  CAS  PubMed  Google Scholar 

N. R. Council, D. o. Earth, L. Studies, B. o. E. Studies, and C. o. F. i. D. Water, Fluoride in drinking water: a scientific review of EPA's standards, 2007.

Sener Y, Tosun G, Kahvecioglu F, Gökalp A, Koç H (2007) Fluoride levels of human plasma and breast milk. Eur J Dent 1(1):21–24

Article  PubMed  PubMed Central  Google Scholar 

Lee KH, Cha M, Lee BH (2020) Neuroprotective effect of antioxidants in the brain. Int J Mol Sci. https://doi.org/10.3390/ijms21197152

Article  PubMed  PubMed Central  Google Scholar 

Robinson MB, Coyle JT (1987) ‘Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. Faseb J 1(6):446–455. https://doi.org/10.1096/fasebj.1.6.2890549

Article  CAS  PubMed  Google Scholar 

Abarbanel HD, Huerta R, Rabinovich MI (2002) Dynamical model of long-term synaptic plasticity. Proc Natl Acad Sci U S A 99(15):10132–10137. https://doi.org/10.1073/pnas.132651299

Article  CAS  PubMed  PubMed Central  Google Scholar 

Potier B et al (2010) Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 9(5):722–735. https://doi.org/10.1111/j.1474-9726.2010.00593.x

Article  CAS  PubMed  Google Scholar 

Rodríguez-Campuzano AG, Ortega A (2021) Glutamate transporters: critical components of glutamatergic transmission. Neuropharmacology 192:108602. https://doi.org/10.1016/j.neuropharm.2021.108602

Article  CAS  PubMed  Google Scholar 

Rothstein J, Martin L, Levey A, Dykes-Hoberg M, Nash N, Kuncl R (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725. https://doi.org/10.1007/s00103-015-2220-8

Article  CAS  PubMed  Google Scholar 

Ottestad-Hansen S et al (2018) The cystine-glutamate exchanger (xCT, Slc7a11) is expressed in significant concentrations in a subpopulation of astrocytes in the mouse brain. Glia 66(5):951–970. https://doi.org/10.1002/glia.23294

Article  PubMed  Google Scholar 

Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17):11455–11458. https://doi.org/10.1074/jbc.274.17.11455

Article  CAS  PubMed  Google Scholar 

Shi J, He Y, Hewett SJ, Hewett JA (2016) Interleukin 1 ␤ regulation of the system x c ؊ substrate- specific subunit, xCT, primary mouse astrocytes involves the rna-binding protein HuR. J Biol Chemis 291(4):1643–1651. https://doi.org/10.1074/jbc.M115.697821

Article  CAS  Google Scholar 

Bridges D, Lutgen R, Lobner V, Baker D (2012) Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev 64:780–802

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Lewerenz et al., "The cystine / glutamate antiporter system x c - in Health and disease : from molecular mechanisms," 18(5): 522–555, 2013, https://doi.org/10.1089/ars.2011.4391.

Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B (2021) NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis 8(6):731–745. https://doi.org/10.1016/j.gendis.2020.11.010

Article  CAS  PubMed  Google Scholar 

Suárez-Pozos E et al (2017) Characterization of the cystine/glutamate antiporter in cultured bergmann glia cells. Neurochem 108:52–59. https://doi.org/10.1016/j.neuint.2017.02.011

Article  CAS  Google Scholar 

M. Dahlmanns, J. K. Dahlmanns, N. Savaskan, H. H. Steiner, and E. Yakubov, 2023 "Glial Glutamate Transporter-Mediated Plasticity: System x(c)(-)/xCT/SLC7A11 and EAAT1/2 in Brain Diseases," (in eng), Front Biosci (Landmark Ed), https://doi.org/10.31083/j.fbl2803057.

Silva-Adaya D, Ramos-Chávez LA, Petrosyan P, González-Alfonso WL, Pérez-Acosta A, Gonsebatt ME (2020) Early neurotoxic effects of inorganic arsenic modulate cortical GSH levels associated with the activation of the Nrf2 and NFκB pathways, expression of amino acid transporters and NMDA receptors and the production of hydrogen sulfide. Front Cell Neurosci 14:17. https://doi.org/10.3389/fncel.2020.00017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh G, Pratt G, Yeo GW, Moore MJ (2015) The clothes make the mrna: past and present trends in mrnp fashion. Annu Rev Biochem 84:325–354. https://doi.org/10.1146/annurev-biochem-080111-092106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ocharán-Mercado A et al (2023) RNA-binding proteins: a role in neurotoxicity? Neurotox Res 41(6):681–697

Article  PubMed 

Comments (0)

No login
gif