Jia H, Qian H, Qu W, Zheng L, Feng W, Ren W (2019) Fluoride occurrence and human health risk in drinking water wells from southern edge of chinese loess plateau. Int J Environ Res Public Health 16(10):14. https://doi.org/10.3390/ijerph16101683
W. H. Organization, WHO recommendations on child health: guidelines approved by the WHO guidelines review committee, World Health Organization, 2017.
Basha PM, Rai P, Begum S (2011) Evaluation of fluoride-induced oxidative stress in rat brain: a multigeneration study. Biol Trace Elem Res 142:623–637
Article CAS PubMed Google Scholar
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I (2023) Fluoride in the central nervous system and its potential influence on the development and invasiveness of brain tumours-a research hypothesis. Int J Mol Sci. https://doi.org/10.3390/ijms24021558
Article PubMed PubMed Central Google Scholar
G. Philippe, Developmental fluoride neurotoxicity : an updated review, pp. 1–17 , publisher = Environmental Health, 2019.
Harsheema Ottappilakkil P, Babu S, Balasubramanian S, Manoharan S, Ekambaram (2022) Fluoride Induced Neurobehavioral Impairments in experimental animals: a brief review. Biol Trace Element Res. https://doi.org/10.1007/s12011-022-03242-2
WHO, "A global overview of national regulations and standards for drinking-water quality.," ed. World Health Organization, Geneva, 2021.
M. Alfaro, M. Ortiz, M. Alarcón, C. Martínez, and J. Ledón, Inventario nacional de calidad del agua. arsénico y fluoruro en agua: riesgos y perspectivas desde la sociedad civil y la academia en México (no. Chapter 2). 2018.
Grandjean P, Landrigan J (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13:330–338. https://doi.org/10.1016/S1474-4422(13)70278-3
Article CAS PubMed PubMed Central Google Scholar
Dec K et al (2019) Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures. Neurotoxicology 74:81–90. https://doi.org/10.1016/j.neuro.2019.06.001
Article CAS PubMed Google Scholar
Inkielewicz I, Krechniak J (2003) Fluoride content in soft tissues and urine of rats exposed to sodium fluoride in drinking water. Fluoride 36:263–266
Bittencourt LO et al (2023) Prolonged exposure to high fluoride levels during adolescence to adulthood elicits molecular, morphological, and functional impairments in the hippocampus. Sci Rep 13(1):11083. https://doi.org/10.1038/s41598-023-38096-8
Article CAS PubMed PubMed Central Google Scholar
Inkielewicz I, Krechniak J (2003) Fluoride content in soft tissues and urine of rats exposed to sodium fluoride in drinking water. Fluoride 36(4):263–266
Agalakova NI, Nadei OV (2020) Inorganic fluoride and functions of brain. Crit Rev Toxicol 50(1):28–46. https://doi.org/10.1080/10408444.2020.1722061
Article CAS PubMed Google Scholar
García-López A, Hernández-Castillo J, Hernández-Kelly L, Olivares-Bañuelos A, Ortega A (2020) Fluoride exposure affects glutamine uptake in müller glia cells. Neurotox Res 38:765–774. https://doi.org/10.1007/s12640-020-00263-4
Article CAS PubMed Google Scholar
Srivastava S, Flora SJS (2020) Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr Environ Health Rep 7(2):140–146. https://doi.org/10.1007/s40572-020-00270-9
Article CAS PubMed Google Scholar
N. R. Council, D. o. Earth, L. Studies, B. o. E. Studies, and C. o. F. i. D. Water, Fluoride in drinking water: a scientific review of EPA's standards, 2007.
Sener Y, Tosun G, Kahvecioglu F, Gökalp A, Koç H (2007) Fluoride levels of human plasma and breast milk. Eur J Dent 1(1):21–24
Article PubMed PubMed Central Google Scholar
Lee KH, Cha M, Lee BH (2020) Neuroprotective effect of antioxidants in the brain. Int J Mol Sci. https://doi.org/10.3390/ijms21197152
Article PubMed PubMed Central Google Scholar
Robinson MB, Coyle JT (1987) ‘Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. Faseb J 1(6):446–455. https://doi.org/10.1096/fasebj.1.6.2890549
Article CAS PubMed Google Scholar
Abarbanel HD, Huerta R, Rabinovich MI (2002) Dynamical model of long-term synaptic plasticity. Proc Natl Acad Sci U S A 99(15):10132–10137. https://doi.org/10.1073/pnas.132651299
Article CAS PubMed PubMed Central Google Scholar
Potier B et al (2010) Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 9(5):722–735. https://doi.org/10.1111/j.1474-9726.2010.00593.x
Article CAS PubMed Google Scholar
Rodríguez-Campuzano AG, Ortega A (2021) Glutamate transporters: critical components of glutamatergic transmission. Neuropharmacology 192:108602. https://doi.org/10.1016/j.neuropharm.2021.108602
Article CAS PubMed Google Scholar
Rothstein J, Martin L, Levey A, Dykes-Hoberg M, Nash N, Kuncl R (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725. https://doi.org/10.1007/s00103-015-2220-8
Article CAS PubMed Google Scholar
Ottestad-Hansen S et al (2018) The cystine-glutamate exchanger (xCT, Slc7a11) is expressed in significant concentrations in a subpopulation of astrocytes in the mouse brain. Glia 66(5):951–970. https://doi.org/10.1002/glia.23294
Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17):11455–11458. https://doi.org/10.1074/jbc.274.17.11455
Article CAS PubMed Google Scholar
Shi J, He Y, Hewett SJ, Hewett JA (2016) Interleukin 1  regulation of the system x c ؊ substrate- specific subunit, xCT, primary mouse astrocytes involves the rna-binding protein HuR. J Biol Chemis 291(4):1643–1651. https://doi.org/10.1074/jbc.M115.697821
Bridges D, Lutgen R, Lobner V, Baker D (2012) Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev 64:780–802
Article CAS PubMed PubMed Central Google Scholar
J. Lewerenz et al., "The cystine / glutamate antiporter system x c - in Health and disease : from molecular mechanisms," 18(5): 522–555, 2013, https://doi.org/10.1089/ars.2011.4391.
Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B (2021) NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis 8(6):731–745. https://doi.org/10.1016/j.gendis.2020.11.010
Article CAS PubMed Google Scholar
Suárez-Pozos E et al (2017) Characterization of the cystine/glutamate antiporter in cultured bergmann glia cells. Neurochem 108:52–59. https://doi.org/10.1016/j.neuint.2017.02.011
M. Dahlmanns, J. K. Dahlmanns, N. Savaskan, H. H. Steiner, and E. Yakubov, 2023 "Glial Glutamate Transporter-Mediated Plasticity: System x(c)(-)/xCT/SLC7A11 and EAAT1/2 in Brain Diseases," (in eng), Front Biosci (Landmark Ed), https://doi.org/10.31083/j.fbl2803057.
Silva-Adaya D, Ramos-Chávez LA, Petrosyan P, González-Alfonso WL, Pérez-Acosta A, Gonsebatt ME (2020) Early neurotoxic effects of inorganic arsenic modulate cortical GSH levels associated with the activation of the Nrf2 and NFκB pathways, expression of amino acid transporters and NMDA receptors and the production of hydrogen sulfide. Front Cell Neurosci 14:17. https://doi.org/10.3389/fncel.2020.00017
Article CAS PubMed PubMed Central Google Scholar
Singh G, Pratt G, Yeo GW, Moore MJ (2015) The clothes make the mrna: past and present trends in mrnp fashion. Annu Rev Biochem 84:325–354. https://doi.org/10.1146/annurev-biochem-080111-092106
Article CAS PubMed PubMed Central Google Scholar
Ocharán-Mercado A et al (2023) RNA-binding proteins: a role in neurotoxicity? Neurotox Res 41(6):681–697
Comments (0)