Dopamine Toxicity Induces ROS-Dependent Death of Murine Neuroblastoma Cells: Impact on the Interactions of Cofilin With UCHL1 and MMP9

Juárez Olguín H, Calderón Guzmán D, Hernández García E, Barragán Mejía G (2016) The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev 9730467. https://doi.org/10.1155/2016/9730467

Turcano P, Mielke MM, Bower JH, Parisi JE, Cutsforth-Gregory JK, Ahlskog JE et al (2018) Levodopa-induced dyskinesia in Parkinson disease: A population-based cohort study. Neurology 91:e2238–e2243. https://doi.org/10.1212/WNL.0000000000006643

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dionísio PA, Amaral JD, Rodrigues CMP (2021) Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev 67:101263. https://doi.org/10.1016/j.arr.2021.101263

Article  PubMed  CAS  Google Scholar 

Bohush A, Niewiadomska G, Filipek A (2018) Role of mitogen activated protein kinase signaling in Parkinson’s disease. Int J Mol Sci 19:2973. https://doi.org/10.3390/ijms19102973

Article  PubMed  PubMed Central  CAS  Google Scholar 

McKinnon C, De Snoo ML, Gondard E, Neudorfer C, Chau H, Ngana SG et al (2020) Early-onset impairment of the ubiquitin-proteasome system in dopaminergic neurons caused by α-synuclein. Acta Neuropathol Commun 8:17. https://doi.org/10.1186/s40478-020-0894-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dolatshahi M, Ranjbar Hameghavandi MH, Sabahi M, Rostamkhani S (2021) Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci 15242. https://doi.org/10.1111/ejn.15242

Callizot N, Combes M, Henriques A, Poindron P (2019) Necrosis, apoptosis, necroptosis, three modes of action of dopaminergic neuron neurotoxins. PLoS ONE 14:e0215277. https://doi.org/10.1371/journal.pone.0215277

Article  PubMed  PubMed Central  CAS  Google Scholar 

McCutcheon RA, Krystal JH, Howes OD (2020) Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 19:15–33. https://doi.org/10.1002/wps.20693

Article  PubMed  PubMed Central  Google Scholar 

Pan X, Kaminga AC, Wen SW, Wu X, Acheampong K, Liu A (2019) Dopamine and dopamine receptors in Alzheimer’s disease: A systematic review and network Meta-Analysis. Front Aging Neurosci 11:175. https://doi.org/10.3389/fnagi.2019.00175

Article  PubMed  PubMed Central  CAS  Google Scholar 

Caroff SN (2020) Recent advances in the Pharmacology of tardive dyskinesia. Clin Psychopharmacol Neurosci 18:493–506. https://doi.org/10.9758/cpn.2020.18.4.493

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maia TV, Conceição VA (2018) Dopaminergic disturbances in tourette syndrome: an integrative account. Biol Psychiatry 84:332–344. https://doi.org/10.1016/j.biopsych.2018.02.1172

Article  PubMed  CAS  Google Scholar 

Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y (2018) Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson’s disease. Park Relat Disord 50:108–112. https://doi.org/10.1016/j.parkreldis.2018.02.023

Article  Google Scholar 

Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90:675–691. https://doi.org/10.1016/j.neuron.2016.03.038

Article  PubMed  CAS  Google Scholar 

Roy T, Chatterjee A, Swarnakar S (2023) Rotenone induced neurodegeneration is mediated via cytoskeleton degradation and necroptosis. BBA Mol Cell Res 1870:119417. https://doi.org/10.1016/j.bbamcr.2022.119417

Article  CAS  Google Scholar 

Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. BBA 1802:29–44. https://doi.org/10.1016/j.bbadis.2009.08.013

Article  PubMed  CAS  Google Scholar 

Zeng XS, Geng WS, Jia JJ (2018) Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro 10:1759091418777438. https://doi.org/10.1177/1759091418777438

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen F, Sugiura Y, Myers KG, Liu Y, Lin W (2010) Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc Natl Acad Sci USA 107:1636–1641. https://doi.org/10.1073/pnas.0911516107

Article  PubMed  PubMed Central  Google Scholar 

Luo Y, He J, Yang C, Orange M, Ren X, Blair et al (2018) UCH-L1 promotes invasion of breast cancer cells through activating Akt signaling pathway. J Cell Biochem 119:691–700. https://doi.org/10.1002/jcb.26232

Weber B, Schaper C, Wang Y, Scholz J, Bein B (2009) Interaction of the ubiquitin carboxyl terminal esterase L1 with alpha(2)-adrenergic receptors inhibits agonist-mediated p44/42 MAP kinase activation. Cell Signal 21:151–1521. https://doi.org/10.1016/j.cellsig.2009.05.011

Article  CAS  Google Scholar 

Hussain S, Bedekovics T, Ali A, Zaid O, May DG, Roux KJ et al (2019) A cysteine near the C-terminus of UCH-L1 is dispensable for catalytic activity but is required to promote AKT phosphorylation, eIF4F assembly, and malignant B-cell survival. Cell Death Discov 5:15. https://doi.org/10.1038/s41420-019-0231-1

Article  CAS  Google Scholar 

Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C et al (2014) GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein. Cell Death Differ 21:1971–1983. https://doi.org/10.1038/cdd.2014.111

Article  PubMed  PubMed Central  CAS  Google Scholar 

Schönhofen P, de Medeiros LM, Chatain CP, Bristot IJ, Klamt F (2014) Cofilin/actin rod formation by dysregulation of cofilin-1 activity as a central initial step in neurodegeneration. Mini Rev Med Chem 14:393–400. https://doi.org/10.2174/1389557514666140506161458

Article  PubMed  CAS  Google Scholar 

Choudhary P, Roy T, Chatterjee A, Mishra VK, Pant S, Swarnakar S (2022) Melatonin rescues swim stress induced gastric ulceration by inhibiting matrix metalloproteinase-3 via down-regulation of inflammatory signaling cascade. Life Sci 297:120426. https://doi.org/10.1016/j.lfs.2022.120426

Article  PubMed  CAS  Google Scholar 

Behl T, Kaur G, Sehgal A, Bhardwaj S, Singh S, Buhas C et al (2021) Multifaceted role of matrix metalloproteinases in neurodegenerative diseases: pathophysiological and therapeutic perspectives. Int J Mol Sci 22:1413. https://doi.org/10.3390/ijms22031413

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M (2010) Differentiation of mouse neuro 2A cells into dopamine neurons. J Neurosci Methods 186(1):60–67. https://doi.org/10.1016/j.jneumeth.2009.11.004

Article  PubMed  CAS  Google Scholar 

Hedges DM, Yorgason JT, Perez AW, Schilaty ND, Williams BM, Watt RK et al (2020) Spontaneous formation of melanin from dopamine in the presence of Iron. Antioxid (Basel) 9:1285. https://doi.org/10.3390/antiox9121285

Article  CAS  Google Scholar 

Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S (2005) Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson’s disease. BBA 1741:65–74. https://doi.org/10.1016/j.bbadis.2005.03.013

Article  PubMed  CAS  Google Scholar 

Harshkova D, Zielińska E, Aksmann A (2019) Optimization of a microplate reader method for the analysis of changes in mitochondrial membrane potential in Chlamydomonas reinhardtii cells using the fluorochrome JC-1. J Appl Phycol 31:3691–3697. https://doi.org/10.1007/s10811-019-01860-3

Article  CAS  Google Scholar 

Morciano G, Sarti AC, Marchi S, Missiroli S, Falzoni S, Raffaghello L et al (2017) Use of luciferase probes to measure ATP in living cells and animals. Nat Protoc 12:1542–1562. https://doi.org/10.1038/nprot.2017.052

Article  PubMed  CAS  Google Scholar 

Iqbal H, Akins DR, Kenedy MR (2018) Co-immunoprecipitation for identifying protein-protein interactions in Borrelia burgdorferi. Methods Mol Biol 1690:47–55. https://doi.org/10.1007/978-1-4939-7383-5_4

Comments (0)

No login
gif