World Health Organitation. Child Maltreatment. 2024. p. https://www.who.int/news-room/fact-sheets/detail/child-maltreatment
Baram TZ, Solodkin A, Davis E, Stern H, Obenaus A, Sandman CA et al (2012) Fragmentation and unpredictability of early-life experience in mental disorders. Am J Psychiatry 169(9):907–915
Article PubMed PubMed Central Google Scholar
Raineki C, Cortés M, Belnoue L, Sullivan R (2012) Effects of early-life abuse differ across development: infant social behavior deficits are followed by adolescent depressive-like behaviors mediated by the amygdala. J Neurosci 32(22):7758–7765
Article CAS PubMed PubMed Central Google Scholar
Norman RE, Byambaa M, De R, Butchart A, Scott J, Vos T (2012) The long-term health consequences of child physical abuse, emotional abuse, and neglect: a systematic review and meta-analysis. PLoS Med 9(11):e1001349
Article PubMed PubMed Central Google Scholar
Glynn LM, Baram TZ (2019) The influence of unpredictable, fragmented parental signals on the developing brain. Front Neuroendocrinol 53:100736
Article PubMed PubMed Central Google Scholar
Shonkoff JP, Garner AS, Siegel BS, Dobbins MI, Earls MF, McGuinn L et al (2012) The lifelong effects of early childhood adversity and toxic stress. Pediatrics 129(1):e232–e246
Felitti VJ (2002) The relation between adverse childhood experiences and adult health: turning gold into lead. Perm J 6(1):44–47
PubMed PubMed Central Google Scholar
Anda RF, Felitti VJ, Bremner JD, Walker JD, Whitfield C, Perry BD et al (2006) The enduring effects of abuse and related adverse experiences in childhood: a convergence of evidence from neurobiology and epidemiology. Perm J 24(2):1–26
Juruena MF, Bourne M, Young AH, Cleare AJ (2021) Hypothalamic-pituitary-adrenal axis dysfunction by early life stress. Neurosci Lett 759:136037
Article CAS PubMed Google Scholar
Bolton JL, Short AK, Simeone KA, Daglian J, Baram TZ (2019) Programming of stress-sensitive neurons and circuits by early-life experiences. Front Behav Neurosci 13(30):1–9
Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68(4):314–319
Article PubMed PubMed Central Google Scholar
Wood CE (2013) Development and programming of the hypothalamus-pituitary-adrenal axis. Clin Obstet Gynecol 56(3):610–621
Davis EP, Glynn LM, Waffarn F, Sandman CA (2011) Prenatal maternal stress programs infant stress regulation. J Child Psychol Psychiatry Allied Discip 52(2):119–129
Cuffe JSM, Turton EL, Akison LK, Bielefeldt-Ohmann H, Moritz KM (2017) Prenatal corticosterone exposure programs sex-specific adrenal adaptations in mouse offspring. J Endocrinol 232(1):37–48
Article CAS PubMed Google Scholar
Briassoulis G, Damjanovic S, Xekouki P, Lefebvre H, Stratakis CA (2013) The glucocorticoid receptor and its expression in the anterior pituitary and the adrenal cortex : a source of variation in hypothalamic-pituitary-adrenal axis function. Implicat Pituit Adrenal Tumor 17(6):941–948
Díaz-Aguila Y, Cuevas-Romero E, Castelán F, Martínez-Gómez M, Rodríguez-Antolín J, Nicolás-Toledo L (2018) Chronic stress and high sucrose intake cause distinctive morphometric effects in the adrenal glands of post-weaned rats. Biotech Histochem 93(8):565–574
Bornstein SR, Berger I, Scriba L, Santambrogio A, Steenblock C (2019) Adrenal cortex–medulla interactions in adaptation to stress and disease. Curr Opin Endocr Metab Res 8:9–14
Mitani F (2014) Functional zonation of the rat adrenal cortex: the development and maintenance. Proc Japan Acad Ser B Phys Biol Sci 90(5):163–183
Kim A, Hammer GD (2007) Adrenocortical cells with stem/progenitor cell properties: recent advances advances. Mol Cell Endocrinol 23(1):1–7
Okudaira N, Akimoto MH, Susa T, Akimoto M, Hisaki H, Iizuka M et al (2024) Accumulation of senescent cells in the adrenal gland induces hypersecretion of corticosterone via IL1β secretion. Aging Cell. https://doi.org/10.1111/acel.14206
Article PubMed PubMed Central Google Scholar
Vega-Vásquez T, Langgartner D, Wang JY, Reber SO, Picard M, Basualto-Alarcón C (2024) Mitochondrial morphology in the mouse adrenal cortex: Influence of chronic psychosocial stress. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2023.106683
Moriceau S, Shionoya K, Jakubs K, Sullivan RM (2009) Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J Neurosci 29(50):15745–15755
Article CAS PubMed PubMed Central Google Scholar
Perry RE, Finegood ED, Braren SH, Dejoseph ML, Putrino DF, Wilson DA et al (2018) Developing a neurobehavioral animal model of poverty: drawing cross-species connections between environments of scarcity-adversity, parenting quality, and infant outcome. Dev Psychopathol 31(2):399–418
Article PubMed PubMed Central Google Scholar
Walker C-D, Bath KG, Joels M, Korosi A, Larauche M, Lucassen PJ et al (2017) Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential: roundtable discussion at the 4th neurobiology of stress workshop (Newport Beach Apr). Stress 20(5):421–448
Article PubMed PubMed Central Google Scholar
Ghasemi A, Jeddi S, Kashfi K (2021) The laboratory rat: age and body weight matter. EXCLI J 20:1431–1445
PubMed PubMed Central Google Scholar
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C (2024) Sex differences in stress response: classical mechanisms and beyond. Curr Neuropharmacol 22(3):475–494
Article CAS PubMed Google Scholar
Chen W, Zhang Q, Su W, Zhang H, Yang Y, Qiao J et al (2014) Effects of 5-hydroxytryptamine 2C receptor agonist MK212 and 2A receptor antagonist MDL100907 on maternal behavior in postpartum female rats. Pharmacol Biochem Behav 117:25–33
Article CAS PubMed Google Scholar
Ivy AS, Brunson KL, Sandman C, Baram TZ (2008) Dysfunctional nurturing behavior in rat dams with limited access to nesting material: a clinically relevant model for early-life stress. Neuroscience 154(3):1132–1142
Article CAS PubMed Google Scholar
Kiernan J. Histological & Histochemical Methods 3Ed. Butterworths. 1999.
Mitani F, Mukai K, Miyamoto H, Suematsu M, Ishimura Y (1999) Development of functional zonation in the rat adrenal cortex. Endocrinology 140(7):3342–3353
Article CAS PubMed Google Scholar
Diaz SL, Doly S, Narboux-Nme N, Fernández S, Mazot P, Banas SM et al (2012) 5-HT 2B receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry 17(2):154–163
Article CAS PubMed Google Scholar
Munro CJ, Lasley B (1988) Non-radiometric methods for immunoassay of steroid hormones. Prog Clin Biol Res 285:289–329
Pallarés ME, Monteleone MC, Pastor V, Grillo Balboa J, Alzamendi A, Brocco MA et al (2021) Early-life stress reprograms stress-coping abilities in male and female juvenile rats. Mol Neurobiol 58(11):5837–5856
Roth TL, Raineki C, Salstein L, Perry R, Sullivan-Wilson TA, Sloan A, Lalji B, Hammock E, Wilson DA, Levitt P, Okutani F, Kaba H, Sullivan RM (2013) Neurobiology of secure infant attachment and attachment despite adversity: a mouse model. Early Hum Dev 12(7):673–680
Perry R, Blaira C, Sullivan R (2017) Neurobiology of infant attachment: attachment despite adversity and parental programming of emotionality. Physiol Behav 176(10):139–148
Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav 79(3):359–371
Comments (0)