Schinder AF, Poo M (2000) The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23(12):639–645. https://doi.org/10.1016/s0166-2236(00)01672-6
Article CAS PubMed Google Scholar
Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. https://doi.org/10.1146/annurev.neuro.24.1.677
Article CAS PubMed PubMed Central Google Scholar
Je HS, Yang F, Ji Y et al (2012) Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci 109:15924–15929. https://doi.org/10.1073/pnas.1207767109
Article PubMed PubMed Central Google Scholar
Poo M (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32. https://doi.org/10.1038/35049004
Article CAS PubMed Google Scholar
Lohof AM, Ip NY, Poo M (1993) Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363:350–353. https://doi.org/10.1038/363350a0
Article CAS PubMed Google Scholar
Gonzalez M, Ruggiero FP, Chang Q et al (1999) Disruption of TrkB-Mediated signaling induces disassembly of postsynaptic receptor clusters at Neuromuscular junctions. Neuron 24:567–583. https://doi.org/10.1016/S0896-6273(00)81113-7
Article CAS PubMed Google Scholar
Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10:86–98. https://doi.org/10.1101/lm.54603
Article PubMed PubMed Central Google Scholar
Seidah NG, Benjannet S, Pareek S et al (1996) Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett 379:247–250. https://doi.org/10.1016/0014-5793(95)01520-5
Article CAS PubMed Google Scholar
Mowla SJ, Farhadi HF, Pareek S et al (2001) Biosynthesis and post-translational Processing of the Precursor to Brain-derived neurotrophic factor *. J Biol Chem 276:12660–12666. https://doi.org/10.1074/jbc.M008104200
Article CAS PubMed Google Scholar
Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal Signal Transduction*. Annu Rev Biochem 72:609–642. https://doi.org/10.1146/annurev.biochem.72.121801.161629
Article CAS PubMed Google Scholar
Nykjaer A, Willnow TE (2012) Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 35:261–270. https://doi.org/10.1016/j.tins.2012.01.003
Article CAS PubMed Google Scholar
Bogacheva PO, Molchanova AI, Pravdivceva ES et al (2022) ProBDNF and brain-derived neurotrophic factor Prodomain differently modulate acetylcholine release in regenerating and mature Mouse Motor synapses. Front Cell Neurosci 16:866802. https://doi.org/10.3389/fncel.2022.866802
Article CAS PubMed PubMed Central Google Scholar
Molchanova A, Balezina O, Gaydukov A (2024) BDNF Prodomain inhibits Neurotransmitter Quantal Release in Mouse Motor synapses with the necessary participation of Sortilin and Adenosine A1-Receptors. J Evol Biochem Physiol 60:363–379. https://doi.org/10.1134/S0022093024010277
Lu B, Pang PT, Woo NH (2005) The Yin and Yang of neurotrophin action. Nat Rev Neurosci 6:603–614. https://doi.org/10.1038/nrn1726
Article CAS PubMed Google Scholar
Majdan M, Miller FD (1999) Neuronal life and death decisions: functional antagonism between the trk and p75 neurotrophin receptors. Int J Dev Neurosci 17:153–161. https://doi.org/10.1016/S0736-5748(99)00016-7
Article CAS PubMed Google Scholar
Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV (1998) Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J Neurosci 18:3273. https://doi.org/10.1523/JNEUROSCI.18-09-03273.1998
Article CAS PubMed PubMed Central Google Scholar
Sanes JR, Lichtman JW (1999) DEVELOPMENT OF THE VERTEBRATE NEUROMUSCULAR JUNCTION. Annu Rev Neurosci 22:389–442. https://doi.org/10.1146/annurev.neuro.22.1.389
Article CAS PubMed Google Scholar
Lichtman JW, Balice-Gordon RJ (1990) Understanding synaptic competition in theory and in practice. J Neurobiol 21:99–106. https://doi.org/10.1002/neu.480210107
Article CAS PubMed Google Scholar
Wyatt RM, Balice-Gordon RJ (2003) Activity-dependent elimination of neuromuscular synapses. J Neurocytol 32:777–794. https://doi.org/10.1023/B:NEUR.0000020623.62043.33
Article CAS PubMed Google Scholar
Nguyen QT, Lichtman JW (1996) Mechanism of synapse disassembly at the developing neuromuscular junction. Curr Opin Neurobiol 6:104–112. https://doi.org/10.1016/S0959-4388(96)80015-8
Article CAS PubMed Google Scholar
Jennings C (1994) Death of a synapse. Nature 372:498–499. https://doi.org/10.1038/372498a0
Article CAS PubMed Google Scholar
Sugiura Y, Ko C-P (1997) Novel modulatory effect of L-Type calcium channels at newly formed neuromuscular junctions. J Neurosci 17:1101. https://doi.org/10.1523/JNEUROSCI.17-03-01101.1997
Article CAS PubMed PubMed Central Google Scholar
Favero M, Lorenzetto E, Bidoia C et al (2007) Synapse formation and elimination: role of activity studied in different models of adult muscle reinnervation. J Neurosci Res 85:2610–2619. https://doi.org/10.1002/jnr.21143
Article CAS PubMed Google Scholar
Martinez-Torres S, Mesquida-Veny F, Del Rio JA, Hervera A (2023) Injury-induced activation of the endocannabinoid system promotes axon regeneration. iScience 26(6):106814. https://doi.org/10.1016/j.isci.2023.106814
Article PubMed PubMed Central Google Scholar
McArdle JJ, Albuquerque EX (1973) A study of the reinnervation of fast and slow mammalian muscles. J Gen Physiol 61:1–23. https://doi.org/10.1085/jgp.61.1.1
Article CAS PubMed PubMed Central Google Scholar
Argentieri TM, Aiken SP, Laxminarayan S, McArdle JJ (1992) Characteristics of synaptic transmission in reinnervating rat skeletal muscle. Pflügers Archiv 421:256–261. https://doi.org/10.1007/BF00374835
Article CAS PubMed Google Scholar
Gaydukov A, Bogacheva P, Tarasova E et al (2019) Regulation of Acetylcholine Quantal release by coupled Thrombin/BDNF signaling in Mouse Motor synapses. Cells 8(7):762. https://doi.org/10.3390/cells8070762
Article CAS PubMed PubMed Central Google Scholar
Balezina OP, Bogacheva PO, Orlova TY (2007) Effect of L-type calcium channel blockers on activity of newly formed synapses in mice. Bull Exp Biol Med 143:171–174. https://doi.org/10.1007/s10517-007-0041-y
Comments (0)