Systemic Neuroprotection by Chlorogenic Acid: Antioxidant and Anti-inflammatory Evaluation in Early Neurodegeneration Induced by 3-Nitropropionic Acid in Mice

Andreone BJ, Larhammar M, Lewcock JW (2020) Cell death and neurodegeneration. Cold Spring Harb Perspect Biol 12(2):a036434. https://doi.org/10.1101/cshperspect.a036434

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19(9):609–633. https://doi.org/10.1038/s41573-020-0072-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sanfeliu C, Bartra C, Suñol C, Rodríguez-Farré E (2024) New insights in animal models of neurotoxicity-induced neurodegeneration. Front Neurosci 8(17):1248727. https://doi.org/10.3389/fnins.2023.1248727

Article  Google Scholar 

Rasheed A, Azeez RF (2019) A review on natural antioxidants. Tradit Complement Med. https://doi.org/10.5772/intechopen.82636

Article  Google Scholar 

Voulo MM, Lima VS, Junior MRM (2019) Phenolic compounds: structure, classification, and antioxidant power. Bioact Compd. https://doi.org/10.1016/B978-0-12-814774-0.00002-5

Article  Google Scholar 

Anggreani E, Lee CY (2017) Neuroprotective effect of chlorogenic acids against Alzheimer’s disease. Int J Food Sci Nutr Diet 6(1):330–337. https://doi.org/10.19070/2326-3350-1700059

Article  CAS  Google Scholar 

Brendan J, Tien H (2018) Chemical composition and value-adding applications of coffee industry byproducts: a review. Resour Conserv Recycl 128:110–117

Article  Google Scholar 

Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, FangFang X, Modarresi-Ghazani F, WenHua L, XiaoHui Z (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74. https://doi.org/10.1016/j.biopha.2017.10.064

Article  PubMed  CAS  Google Scholar 

Metwally DM, Alajmi RA, El-Khadragy MF, Yehia HM, AL-Megrin WA, Akabawy AM, Amin HK, Moneim AE (2020) Chlorogenic acid confers robust neuroprotection against arsenite toxicity in mice by reversing oxidative stress, inflammation, and apoptosis. J Funct Foods 75:104202

Article  CAS  Google Scholar 

Alarcón-Herrera N, Flores-Maya S, Bellido B, García-Bores AM, Mendoza E, Ávila-Acevedo G, Hernández-Echeagaray E (2017) Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem Toxicol 109(Pt 2):1018–1025. https://doi.org/10.1016/j.fct.2017.04.048

Article  PubMed  CAS  Google Scholar 

Brouillet E, Condé F, Beal MF, Hantraye P (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59(5):427–468. https://doi.org/10.1016/s0301-0082(99)00005-2

Article  PubMed  CAS  Google Scholar 

Reynolds Jr., N.C., Lin, W., The neurochemistry of 3-nitropropionic acid, from mitochondrial inhibitors and neurodegenerative disorders. P.R. Sanberg, Nishino, H., Borlogan, C.V., Editor. 2000, Humana Press Inc: Totowa, NJ. p. 35–49.

Rodríguez E, Rivera I, Astorga S, Mendoza E, García F, Hernández-Echeagaray E (2010) Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage. Int J Biol Sci 6(3):199–212. https://doi.org/10.7150/ijbs.6.199.PMID:20440403;PMCID:PMC2862394

Article  PubMed  PubMed Central  Google Scholar 

Wahlin TB, Byrne GJ (2012) Cognition in Huntington’s disease. Huntingt Dis Core Concepts Curr Adv: Croatia InTech Open Access Publ. https://doi.org/10.5772/31284

Article  Google Scholar 

Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41(5):646–653. https://doi.org/10.1002/ana.410410514

Article  PubMed  CAS  Google Scholar 

Coles CJ, Edmondson DE, Singer TP (1979) Inactivation of succinate dehydrogenase by 3-nitropropionate. J Biol Chem 254(12):5161–5167

Article  PubMed  CAS  Google Scholar 

Hernansanz-Agustín P, Enríquez JA (2021) Generation of reactive oxygen species by mitochondria. Antioxidants (Basel) 10(3):415. https://doi.org/10.3390/antiox10030415

Article  PubMed  CAS  Google Scholar 

Cervellati C, Trentini A, Pecorelli A, Valacchi G (2020) Inflammation in Neurological disorders: the thin boundary between brain and periphery. Antioxid Redox Signal 33(3):191–210. https://doi.org/10.1089/ars.2020.8076

Article  PubMed  CAS  Google Scholar 

Valadão PA et al (2020) Inflammation in Huntington’s disease: a few new twists on an old tale. J Neuroimmunol 348:577380. https://doi.org/10.1016/j.jneuroim.2020.577380

Article  PubMed  CAS  Google Scholar 

Bunner KD, Rebec GV (2016) Corticostriatal dysfunction in Huntington’s disease: the basics. Front Hum Neurosci 28(10):317. https://doi.org/10.3389/fnhum.2016.00317

Article  CAS  Google Scholar 

Shen W, Qi R, Zhang J, Wang Z, Wang H, Hu C, Zhao Y, Bie M, Wang Y, Fu Y, Chen M, Lu D (2012) Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res Bull 88(5):487–494. https://doi.org/10.1016/j.brainresbull.2012.04.010

Article  PubMed  CAS  Google Scholar 

Hernández-Echeagaray E, González N, Ruelas A, Mendoza E, Rodríguez-Martínez E, Antuna-Bizarro R (2011) Low doses of 3-nitropropionic acid in vivo induce damage in mouse skeletal muscle. Neurol Sci 32(2):241–254. https://doi.org/10.1007/s10072-010-0394-2

Article  PubMed  Google Scholar 

Lal R, Singh A, Watts S, Chopra K (2024) Experimental models of Parkinson’s disease: challenges and opportunities. Eur J Pharmacol 980:176819. https://doi.org/10.1016/j.ejphar.2024.176819

Article  PubMed  CAS  Google Scholar 

Aziz NA, van der Marck MA, Pijl H, Olde Rikkert MG, Bloem BR, Roos RA (2008) Weight loss in neurodegenerative disorders. J Neurol 255(12):1872–1880. https://doi.org/10.1007/s00415-009-0062-8

Article  PubMed  CAS  Google Scholar 

Yang X, Qiu K, Jiang Y, Huang Y, Zhang Y, Liao Y (2024) Metabolic crosstalk between liver and brain: from diseases to mechanisms. Int J Mol Sci 25(14):7621. https://doi.org/10.3390/ijms25147621

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao W, Wang C, Yu L, Sheng T, Wu Z, Wang X, Zhang D, Lin Y, Gong Y (2019) Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway. Biomed Res Int 18(2019):6769789. https://doi.org/10.1155/2019/6769789

Article  CAS  Google Scholar 

Xiong S, Su X, Kang Y, Si J, Wang L, Li X, Ma K (2023) Effect and mechanism of chlorogenic acid on cognitive dysfunction in mice by lipopolysaccharide-induced neuroinflammation. Front Immunol 24(14):1178188. https://doi.org/10.3389/fimmu.2023.1178188

Article  CAS  Google Scholar 

Huang J, Xie M, He L, Song X, Cao T (2023) Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front Pharmacol 13(14):1218015. https://doi.org/10.3389/fphar.2023.1218015

Article  CAS  Google Scholar 

Bak J, Kim HJ, Kim SY, Choi YS (2016) Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity. Korean J Physiol Pharmacol 20(3):279–286. https://doi.org/10.4196/kjpp.2016.20.3.279

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brouillet E (2014) The 3-NP model of striatal neurodegeneration. Curr Protoc Neurosci. https://doi.org/10.1002/0471142301.ns0948s67

Article  PubMed  Google Scholar 

Nishimura M, Okimura Y, Fujita H, Yano H, Lee J, Suzaki E, Inoue M, Utsumi K, Sasaki J (2008) Mechanism of 3-nitropropionic acid-induced membrane permeability transition of isolated mitochondria and its suppression by L-c

Comments (0)

No login
gif