Andreone BJ, Larhammar M, Lewcock JW (2020) Cell death and neurodegeneration. Cold Spring Harb Perspect Biol 12(2):a036434. https://doi.org/10.1101/cshperspect.a036434
Article PubMed PubMed Central CAS Google Scholar
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19(9):609–633. https://doi.org/10.1038/s41573-020-0072-x
Article PubMed PubMed Central CAS Google Scholar
Sanfeliu C, Bartra C, Suñol C, Rodríguez-Farré E (2024) New insights in animal models of neurotoxicity-induced neurodegeneration. Front Neurosci 8(17):1248727. https://doi.org/10.3389/fnins.2023.1248727
Rasheed A, Azeez RF (2019) A review on natural antioxidants. Tradit Complement Med. https://doi.org/10.5772/intechopen.82636
Voulo MM, Lima VS, Junior MRM (2019) Phenolic compounds: structure, classification, and antioxidant power. Bioact Compd. https://doi.org/10.1016/B978-0-12-814774-0.00002-5
Anggreani E, Lee CY (2017) Neuroprotective effect of chlorogenic acids against Alzheimer’s disease. Int J Food Sci Nutr Diet 6(1):330–337. https://doi.org/10.19070/2326-3350-1700059
Brendan J, Tien H (2018) Chemical composition and value-adding applications of coffee industry byproducts: a review. Resour Conserv Recycl 128:110–117
Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, FangFang X, Modarresi-Ghazani F, WenHua L, XiaoHui Z (2018) Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother 97:67–74. https://doi.org/10.1016/j.biopha.2017.10.064
Article PubMed CAS Google Scholar
Metwally DM, Alajmi RA, El-Khadragy MF, Yehia HM, AL-Megrin WA, Akabawy AM, Amin HK, Moneim AE (2020) Chlorogenic acid confers robust neuroprotection against arsenite toxicity in mice by reversing oxidative stress, inflammation, and apoptosis. J Funct Foods 75:104202
Alarcón-Herrera N, Flores-Maya S, Bellido B, García-Bores AM, Mendoza E, Ávila-Acevedo G, Hernández-Echeagaray E (2017) Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem Toxicol 109(Pt 2):1018–1025. https://doi.org/10.1016/j.fct.2017.04.048
Article PubMed CAS Google Scholar
Brouillet E, Condé F, Beal MF, Hantraye P (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59(5):427–468. https://doi.org/10.1016/s0301-0082(99)00005-2
Article PubMed CAS Google Scholar
Reynolds Jr., N.C., Lin, W., The neurochemistry of 3-nitropropionic acid, from mitochondrial inhibitors and neurodegenerative disorders. P.R. Sanberg, Nishino, H., Borlogan, C.V., Editor. 2000, Humana Press Inc: Totowa, NJ. p. 35–49.
Rodríguez E, Rivera I, Astorga S, Mendoza E, García F, Hernández-Echeagaray E (2010) Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage. Int J Biol Sci 6(3):199–212. https://doi.org/10.7150/ijbs.6.199.PMID:20440403;PMCID:PMC2862394
Article PubMed PubMed Central Google Scholar
Wahlin TB, Byrne GJ (2012) Cognition in Huntington’s disease. Huntingt Dis Core Concepts Curr Adv: Croatia InTech Open Access Publ. https://doi.org/10.5772/31284
Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41(5):646–653. https://doi.org/10.1002/ana.410410514
Article PubMed CAS Google Scholar
Coles CJ, Edmondson DE, Singer TP (1979) Inactivation of succinate dehydrogenase by 3-nitropropionate. J Biol Chem 254(12):5161–5167
Article PubMed CAS Google Scholar
Hernansanz-Agustín P, Enríquez JA (2021) Generation of reactive oxygen species by mitochondria. Antioxidants (Basel) 10(3):415. https://doi.org/10.3390/antiox10030415
Article PubMed CAS Google Scholar
Cervellati C, Trentini A, Pecorelli A, Valacchi G (2020) Inflammation in Neurological disorders: the thin boundary between brain and periphery. Antioxid Redox Signal 33(3):191–210. https://doi.org/10.1089/ars.2020.8076
Article PubMed CAS Google Scholar
Valadão PA et al (2020) Inflammation in Huntington’s disease: a few new twists on an old tale. J Neuroimmunol 348:577380. https://doi.org/10.1016/j.jneuroim.2020.577380
Article PubMed CAS Google Scholar
Bunner KD, Rebec GV (2016) Corticostriatal dysfunction in Huntington’s disease: the basics. Front Hum Neurosci 28(10):317. https://doi.org/10.3389/fnhum.2016.00317
Shen W, Qi R, Zhang J, Wang Z, Wang H, Hu C, Zhao Y, Bie M, Wang Y, Fu Y, Chen M, Lu D (2012) Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Res Bull 88(5):487–494. https://doi.org/10.1016/j.brainresbull.2012.04.010
Article PubMed CAS Google Scholar
Hernández-Echeagaray E, González N, Ruelas A, Mendoza E, Rodríguez-Martínez E, Antuna-Bizarro R (2011) Low doses of 3-nitropropionic acid in vivo induce damage in mouse skeletal muscle. Neurol Sci 32(2):241–254. https://doi.org/10.1007/s10072-010-0394-2
Lal R, Singh A, Watts S, Chopra K (2024) Experimental models of Parkinson’s disease: challenges and opportunities. Eur J Pharmacol 980:176819. https://doi.org/10.1016/j.ejphar.2024.176819
Article PubMed CAS Google Scholar
Aziz NA, van der Marck MA, Pijl H, Olde Rikkert MG, Bloem BR, Roos RA (2008) Weight loss in neurodegenerative disorders. J Neurol 255(12):1872–1880. https://doi.org/10.1007/s00415-009-0062-8
Article PubMed CAS Google Scholar
Yang X, Qiu K, Jiang Y, Huang Y, Zhang Y, Liao Y (2024) Metabolic crosstalk between liver and brain: from diseases to mechanisms. Int J Mol Sci 25(14):7621. https://doi.org/10.3390/ijms25147621
Article PubMed PubMed Central CAS Google Scholar
Gao W, Wang C, Yu L, Sheng T, Wu Z, Wang X, Zhang D, Lin Y, Gong Y (2019) Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway. Biomed Res Int 18(2019):6769789. https://doi.org/10.1155/2019/6769789
Xiong S, Su X, Kang Y, Si J, Wang L, Li X, Ma K (2023) Effect and mechanism of chlorogenic acid on cognitive dysfunction in mice by lipopolysaccharide-induced neuroinflammation. Front Immunol 24(14):1178188. https://doi.org/10.3389/fimmu.2023.1178188
Huang J, Xie M, He L, Song X, Cao T (2023) Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front Pharmacol 13(14):1218015. https://doi.org/10.3389/fphar.2023.1218015
Bak J, Kim HJ, Kim SY, Choi YS (2016) Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity. Korean J Physiol Pharmacol 20(3):279–286. https://doi.org/10.4196/kjpp.2016.20.3.279
Article PubMed PubMed Central CAS Google Scholar
Brouillet E (2014) The 3-NP model of striatal neurodegeneration. Curr Protoc Neurosci. https://doi.org/10.1002/0471142301.ns0948s67
Nishimura M, Okimura Y, Fujita H, Yano H, Lee J, Suzaki E, Inoue M, Utsumi K, Sasaki J (2008) Mechanism of 3-nitropropionic acid-induced membrane permeability transition of isolated mitochondria and its suppression by L-c
Comments (0)