Froese DS, Gravel RA (2010) Genetic disorders of vitamin B12metabolism: eight complementation groups – eight genes. Expert Rev Mol Med 12. https://doi.org/10.1017/s1462399410001651
Head PE, Meier JL, Venditti CP (2023) New insights into the pathophysiology of methylmalonic acidemia. J Inherit Metab Dis 46:436–449. https://doi.org/10.1002/jimd.12617
Article CAS PubMed PubMed Central Google Scholar
An D, Schneller JL, Frassetto A, Liang S, Zhu X, Park J-S, Theisen M, Hong S-J, Zhou J, Rajendran R, Levy B, Howell R, Besin G, Presnyak V, Sabnis S, Murphy-Benenato KE, Kumarasinghe ES, Salerno T, Mihai C, Lukacs CM, Chandler RJ, Guey LT, Venditti CP, Martini PGV (2017) Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep 21:3548–3558. https://doi.org/10.1016/j.celrep.2017.11.081
Article CAS PubMed PubMed Central Google Scholar
Hu S, Kong X (2022) The genotype analysis and prenatal genetic diagnosis among 244 pedigrees with methylmalonic aciduria in China. Taiwan J Obstet Gynecol 61:290–298. https://doi.org/10.1016/j.tjog.2022.02.017
Chen T, Gao Y, Zhang S, Wang Y, Sui C, Yang L (2023) Methylmalonic acidemia: neurodevelopment and neuroimaging. Front NeuroSci 17. https://doi.org/10.3389/fnins.2023.1110942
Li Q, Jin H, Liu Y, Rong Y, Yang T, Nie X, Song W (2021) Determination of cytokines and oxidative stress biomarkers in cognitive impairment induced by methylmalonic acidemia. Neuroimmunomodulation 28:178–186. https://doi.org/10.1159/000511590
Article CAS PubMed Google Scholar
Jafari P, Braissant O, Zavadakova P, Henry H, Bonafé L, Ballhausen D (2013) Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures. Orphanet J Rare Dis 8(4). https://doi.org/10.1186/1750-1172-8-4
Martinelli D, Catesini G, Greco B, Guarnera A, Parrillo C, Maines E, Longo D, Napolitano A, De Nictolis F, Cairoli S, Liccardo D, Caviglia S, Sidorina A, Olivieri G, Siri B, Bianchi R, Spagnoletti G, Dello Strologo L, Spada M, Dionisi-Vici C (2023) Neurologic outcome following liver transplantation for methylmalonic aciduria. J Inherit Metab Dis 46:450–465. https://doi.org/10.1002/jimd.12599
Article CAS PubMed Google Scholar
Annesley SJ, Fisher PR (2019) Mitochondria in health and disease. Cells 8. https://doi.org/10.3390/cells8070680
Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L (2023) Cellular mitophagy: mechanism, roles in diseases and small molecule Pharmacological regulation. Theranostics 13:736–766. https://doi.org/10.7150/thno.79876
Article CAS PubMed PubMed Central Google Scholar
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ, Ren J (2022) Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med 28:836–849. https://doi.org/10.1016/j.molmed.2022.06.007
Article CAS PubMed PubMed Central Google Scholar
Luciani A, Schumann A, Berquez M, Chen Z, Nieri D, Failli M, Debaix H, Festa BP, Tokonami N, Raimondi A, Cremonesi A, Carrella D, Forny P, Kolker S, Diomedi Camassei F, Diaz F, Moraes CT, Di Bernardo D, Baumgartner MR, Devuyst O (2020) Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency. Nat Commun 11:970. https://doi.org/10.1038/s41467-020-14729-8
Article CAS PubMed PubMed Central Google Scholar
Chen L, Lv Y, Wu H, Wang Y, Xu Z, Liu G, He Y, Li X, Liu J, Feng Y, Bai Y, Xie W, Zhou Q, Wu Q (2024) Gastrodin exerts perioperative myocardial protection by improving mitophagy through the PINK1/Parkin pathway to reduce myocardial ischemia-reperfusion injury. Phytomedicine 133:155900. https://doi.org/10.1016/j.phymed.2024.155900
Article CAS PubMed Google Scholar
Ramirez A, Old W, Selwood DL, Liu X (2022) Cannabidiol activates PINK1-Parkin-dependent mitophagy and mitochondrial-derived vesicles. Eur J Cell Biol 101:151185. https://doi.org/10.1016/j.ejcb.2021.151185
Article CAS PubMed Google Scholar
Luciani A, Devuyst O (2020) Methylmalonyl acidemia: from mitochondrial metabolism to defective mitophagy and disease. Autophagy 16:1159–1161. https://doi.org/10.1080/15548627.2020.1753927
Article CAS PubMed PubMed Central Google Scholar
Wang R, Zhao Y, Zhou L, Lin F, Wan M, Gan A, Wu B, Yan T, Jia Y (2024) Costunolide ameliorates MNNG-induced chronic atrophic gastritis through inhibiting oxidative stress and DNA damage via activation of Nrf2. Phytomedicine 130:155581. https://doi.org/10.1016/j.phymed.2024.155581
Article CAS PubMed Google Scholar
Alamoudi AJ, Badr-Eldin SM, Ahmed OAA, Fahmy UA, Elbehairi SEI, Alfaifi MY, Asfour HZ, Mohamed GA, Ibrahim SRM, Abdel-Naim AB, Abdallah HM (2023) Optimized bilosome-based nanoparticles enhance cytotoxic and pro-apoptotic activity of Costunolide in LS174T colon cancer cells. Biomed Pharmacother 168:115757. https://doi.org/10.1016/j.biopha.2023.115757
Article CAS PubMed Google Scholar
Xu H, Chen J, Chen P, Li W, Shao J, Hong S, Wang Y, Chen L, Luo W, Liang G (2023) Costunolide covalently targets NACHT domain of NLRP3 to inhibit inflammasome activation and alleviate NLRP3-driven inflammatory diseases. Acta Pharm Sin B 13:678–693. https://doi.org/10.1016/j.apsb.2022.09.014
Article CAS PubMed Google Scholar
Cheong CU, Yeh CS, Hsieh YW, Lee YR, Lin MY, Chen CY, Lee CH (2016) Protective effects of Costunolide against hydrogen Peroxide-Induced injury in PC12 cells. Molecules 21. https://doi.org/10.3390/molecules21070898
Meng L, Ma H, Meng J, Li T, Zhu Y, Zhao Q (2021) Costunolide attenuates oxygen–glucose deprivation/reperfusion–induced mitochondrial–mediated apoptosis in PC12 cells. Mol Med Rep 23. https://doi.org/10.3892/mmr.2021.12050
Choi YJ, Choi YK, Ko SG, Cheon C, Kim TY (2023) Investigation of molecular mechanisms involved in sensitivity to the Anti-Cancer activity of Costunolide in breast Cancer cells. Int J Mol Sci 24. https://doi.org/10.3390/ijms24044009
Dutra JCWM, Wannmacher CM, Wannmacher LE, Pires RF, Rosa-Júnior A (1991) Effect of postnatal methylmalonate administration on adult rat behavior. Braz J Med Biol Res 24(6):595–605
Kowaltowski AJ, Maciel EN, Fornazari M, Castilho RF (2006) Diazoxide protects against methylmalonate-induced neuronal toxicity. Exp Neurol 201:165–171. https://doi.org/10.1016/j.expneurol.2006.04.004
Article CAS PubMed Google Scholar
Xu J, Chen Z, Yu F, Liu H, Ma C, Xie D, Hu X, Leak RK, Chou SHY, Stetler RA, Shi Y, Chen J, Bennett MVL, Chen G (2020) IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proc Natl Acad Sci 117:32679–32690. https://doi.org/10.1073/pnas.2018497117
Article CAS PubMed PubMed Central Google Scholar
Wilnai Y, Enns GM, Niemi A-K, Higgins J, Vogel H (2014) Abnormal hepatocellular mitochondria in methylmalonic acidemia. Ultrastruct Pathol 38:309–314. https://doi.org/10.3109/01913123.2014.921657
Shi Z, Li C, Yin Y, Yang Z, Xue H, Mu N, Wang Y, Liu M, Ma H (2018) Aerobic interval training regulated SIRT3 attenuates High-Fat-Diet-Associated cognitive dysfunction. Biomed Res Int 2018:1–8. https://doi.org/10.1155/2018/2708491
Roger AJ, Muñoz-Gómez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177–R1192. https://doi.org/10.1016/j.cub.2017.09.015
Article CAS PubMed Google Scholar
Zsengellér ZK, Aljinovic N, Teot LA, Korson M, Rodig N, Sloan JL, Venditti CP, Berry GT, Rosen S (2014) Methylmalonic acidemia: A megamitochondrial disorder affecting the kidney. Pediatr Nephrol 29:2139–2146. https://doi.org/10.1007/s00467-014-2847-y
Teleanu DM, Niculescu A-G, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM, Teleanu RI (2022) An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci 23. https://doi.org/10.3390/ijms23115938
Zhang T, Wu P, Budbazar E, Zhu Q, Sun C, Mo J, Peng J, Gospodarev V, Tang J, Shi H, Zhang JH (2019) Mitophagy reduces oxidative stress via Keap1 (Kelch-Like Epichlorohydrin-Associated protein 1)/Nrf2 (Nuclear factor-E2-Related factor 2)/PHB2 (Prohibitin 2) pathway after subarachnoid hemorrhage in rats. Stroke 50:978–988. https://doi.org/10.1161/strokeaha.118.021590
Article CAS PubMed PubMed Central Google Scholar
Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, Wen P, Dai Y, Gou F, Ji Y, Zhao D, Yang L (2023) PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 84. https://doi.org/10.1016/j.arr.2022.101817
Zhou T-Y, Ma R-X, Li J, Zou B, Yang H, Ma R-Y, Wu Z-Q, Li J, Yao Y (2023) Review of PINK1-Parkin-mediated mitochondrial autophagy in Alzheimer’s disease. Eur J Pharmacol 959. https://doi.org/10.1016/j.ejphar.2023.176057
Pickrell Alicia M, Youle Richard J (2015) The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273. https://doi.org/10.1016/j.neuron.2014.12.007
Article CAS PubMed PubMed Central Google Scholar
Hwang HJ, Ha H, Lee BS, Kim BH, Song HK, Kim YK (2022) LC3B is an RNA-binding protein to trigger rapid mRNA degradation during autophagy. Nat Commun 13.
Comments (0)