Zhang L, Chi B, Chai J, Qin L, Zhang G, Hua P, Jin C. LncRNA CCDC144NL-AS1 serves as a prognosis biomarker for non-small cell lung cancer and promotes cellular function by targeting miR-490-3p. Mol Biotechnol. 2021;63(10):933–40.
Article CAS PubMed Google Scholar
Chen Y, Zitello E, Guo R, Deng Y. The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med. 2021;11(4):e367.
Le P, Romano G, Nana-Sinkam P, Acunzo M. Non-coding RNAs in cancer diagnosis and therapy: focus on lung cancer. Cancers. 2021;13(6):1372.
Article CAS PubMed PubMed Central Google Scholar
Ku GW, Kang Y, Yu S-L, Park J, Park S, Jeong IB, et al. LncRNA LINC00240 suppresses invasion and migration in non-small cell lung cancer by sponging miR-7-5p. BMC Cancer. 2021;21:1–13.
Saleh AA, Elghobashy YA, Kasemy ZA, Hegazy A, ALrefai AA. Impact of dysregulated LINC01559 and LINC01410 expression on the diagnosis and survival of non-small cell lung cancer. Biochem Genet. 2024;62(5):4011–4026. https://doi.org/10.1007/s10528-023-10632-1.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.
Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P. Risk factors for lung cancer worldwide. Eur Respir J. 2016;48(3):889–902.
Wang BY, Huang JY, Chen HC, Lin CH, Lin SH, Hung WH, Cheng YF. The comparison between adenocarcinoma and squamous cell carcinoma in lung cancer patients. J Cancer Res Clin Oncol. 2020;146(1):43–52. https://doi.org/10.1007/s00432-019-03079-8.
Zarogoulidis K, Zarogoulidis P, Darwiche K, Boutsikou E, Machairiotis N, Tsakiridis K, et al. Treatment of non-small cell lung cancer (NSCLC). J Thorac Dis. 2013;5(Suppl 4):S389–96. https://doi.org/10.3978/j.issn.2072-1439.2013.07.10.
Article PubMed PubMed Central Google Scholar
Chetan MR, Gleeson FV. Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives. Eur Radiol. 2021;31:1049–58.
Shukla S, Evans JR, Malik R, Feng FY, Dhanasekaran SM, Cao X, et al. Development of a RNA-Seq based Prognostic signature in Lung Adenocarcinoma. J Natl Cancer Inst. 2017;109(1). https://doi.org/10.1093/jnci/djw200.
Lin T, Fu Y, Zhang X, Gu J, Ma X, Miao R, et al. A seven-long noncoding RNA signature predicts overall survival for patients with early stage non-small cell lung cancer. Aging. 2018;10(9):2356–66. https://doi.org/10.18632/aging.101550.
Article CAS PubMed PubMed Central Google Scholar
Tajmehri H, Mousavi FS, Golrokh FJ, Nezami PV, Khanpour P, Noroudi SG, Salehzadeh A. Evaluation of the cytotoxic effect of cobalt oxide nanoparticles functionalized by glucose and conjugated with lapatinib (Co3O4@ Glu-Lapatinib) on a lung cancer cell line and evaluation of the expression of CASP8, mTOR1, and MAPK1 genes. BioNanoScience. 2024;14:999–1010. https://doi.org/10.1007/s12668-024-01348-6.
Tariq M, Hussain N, Rehman K, Akash MSH, Al Haddad AHI, Said ASA, et al. Macrophages M2 polarization is involved in lapatinib-mediated chemopreventive effects in the lung cancer. Biomed Pharmacother. 2023;161:114527. https://doi.org/10.1016/j.biopha.2023.114527.
Article CAS PubMed Google Scholar
Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics. 2021;13(8):1151.
Article CAS PubMed PubMed Central Google Scholar
Kashkooli FM, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: static and dynamic targeting strategies. J Controlled Release. 2020;327:316–49.
Zeinali M, Abbaspour-Ravasjani S, Ghorbani M, Babazadeh A, Soltanfam T, Santos AC, et al. Nanovehicles for co-delivery of anticancer agents. Drug Discov Today. 2020;25(8):1416–30.
Liu J, Bai Y, Li Y, Li X, Luo K. Reprogramming the immunosuppressive tumor microenvironment through nanomedicine: an immunometabolism perspective. eBioMedicine. 2024;107. https://doi.org/10.1016/j.ebiom.2024.105301.
Samtani MN, Sheehan JJ, Fu DJ, Remmerie B, Sliwa JK, Alphs L. Management of antipsychotic treatment discontinuation and interruptions using model-based simulations. Clin Pharmacol. 2012;4:25–40. https://doi.org/10.2147/cpaa.S32735.
Article CAS PubMed PubMed Central Google Scholar
Li H, Gong Q, Luo K. Biomarker-driven molecular imaging probes in radiotherapy. Theranostics. 2024;14(10):4127–46. https://doi.org/10.7150/thno.97768.
Article PubMed PubMed Central Google Scholar
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60(11):1307–15. https://doi.org/10.1016/j.addr.2008.03.016.
Article CAS PubMed Google Scholar
Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010;12(7):2313–33. https://doi.org/10.1007/s11051-010-9911-8.
Article CAS PubMed PubMed Central Google Scholar
Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem. 2018;9:43–55.
Park S-B, Lih E, Park K-S, Joung YK, Han DK. Biopolymer-based functional composites for medical applications. Prog Polym Sci. 2017;68:77–105.
Jhaveri J, Raichura Z, Khan T, Momin M, Omri A. Chitosan nanoparticles-insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules. 2021;26(2):272.
Article CAS PubMed PubMed Central Google Scholar
Zarepour A, Egil AC, Cokol Cakmak M, Esmaeili Rad M, Cetin Y, Aydinlik S, et al. Fabrication of a dual-drug-loaded smart Niosome-g-Chitosan Polymeric platform for Lung Cancer Treatment. Polymers. 2023;15(2):298.
Article CAS PubMed PubMed Central Google Scholar
Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, Acosta N. Chitosan: an overview of its properties and applications. Polymers. 2021;13(19):3256.
Article CAS PubMed PubMed Central Google Scholar
da Silva AB, Rufato KB, de Oliveira AC, Souza PR, da Silva EP, Muniz EC, et al. Composite materials based on chitosan/gold nanoparticles: from synthesis to biomedical applications. Int J Biol Macromol. 2020;161:977–98. https://doi.org/10.1016/j.ijbiomac.2020.06.113.
Article CAS PubMed Google Scholar
Shade CW. Liposomes as Advanced Delivery systems for Nutraceuticals. Integr Med (Encinitas). 2016;15(1):33–6.
Dananjaya SHS, Udayangani RMC, Oh C, Nikapitiya C, Lee J, De Zoysa M. Green synthesis, physio-chemical characterization and anti-candidal function of a biocompatible chitosan gold nanocomposite as a promising antifungal therapeutic agent. RSC Adv. 2017;7(15):9182–93. https://doi.org/10.1039/C6RA26915J.
Sun L, Pu S, Li J, Cai J, Zhou B, Ren G, et al. Size controllable one step synthesis of gold nanoparticles using carboxymethyl chitosan. Int J Biol Macromol. 2019;122:770–83. https://doi.org/10.1016/j.ijbiomac.2018.11.006.
Article CAS PubMed Google Scholar
Leiva A, Bonardd S, Pino M, Saldías C, Kortaberria G, Radić D. Improving the performance of chitosan in the synthesis and stabilization of gold nanoparticles. Eur Polymer J. 2015;68:419–31. https://doi.org/10.1016/j.eurpolymj.2015.04.032.
Shamsi H, Yari R, Salehzadeh A. Biosynthesized BiFe2O4@ Ag nanoparticles mediated Scenedesmus obliquus induce apoptosis in AGS gastric cancer cell line. Sci Rep. 2024;14(1):10284.
Article CAS PubMed PubMed Central Google Scholar
Bakhsh MR, Rouhi L, Ghaedi K, Hashemi M, Peymani M, Samarghandian S. Therapeutic effects of guanidine hydrochloride on breast cancer through targeting KCNG1 gene. Biomed Pharmacother. 2023;164:114982.
Comments (0)