Khellaf A, Khan DZ, Helmy A (2019) Recent advances in traumatic brain injury. J Neurol 266:2878–2889. https://doi.org/10.1007/s00415-019-09541-4
Article PubMed PubMed Central Google Scholar
Kaur P, Sharma S (2018) Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol 16:1224–1238. https://doi.org/10.2174/1570159X15666170613083606
Article CAS PubMed PubMed Central Google Scholar
Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao LR (2017) Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant 26:1118–1130. https://doi.org/10.1177/0963689717714102
Article PubMed PubMed Central Google Scholar
Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016
Article CAS PubMed Google Scholar
Fernandez-Fernandez S, Almeida A, Bolaños JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443:3–11. https://doi.org/10.1042/BJ20111943
Article CAS PubMed Google Scholar
Ralay Ranaivo H, Hodge JN, Choi N, Wainwright MS (2012) Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways. J Neuroinflammation 9:68. https://doi.org/10.1186/1742-2094-9-68
Article CAS PubMed Google Scholar
Vilalta A, Sahuquillo J, Rosell A, Poca MA, Riveiro M, Montaner J (2008) Moderate and severe traumatic brain injury induce early overexpression of systemic and brain gelatinases. Intensive Care Med 34:1384–1392. https://doi.org/10.1007/s00134-008-1056-1
Article CAS PubMed Google Scholar
Roberts DJ, Jenne CN, Léger C, Kramer AH, Gallagher CN, Todd S, Parney IF, Doig CJ, Yong VW, Kubes P, Zygun DA (2013) A prospective evaluation of the temporal matrix metalloproteinase response after severe traumatic brain injury in humans. J Neurotrauma 30:1717–1726. https://doi.org/10.1089/neu.2012.2841
Yang C, Iyer RR, Yu AC, Yong RL, Park DM, Weil RJ, Ikejiri B, Brady RO, Lonser RR, Zhuang Z (2012) β-Catenin signaling initiates the activation of astrocytes and its dysregulation contributes to the pathogenesis of astrocytomas. Proc Natl Acad Sci U S A 109:6963–6968. https://doi.org/10.1073/pnas.1118754109
Article PubMed PubMed Central Google Scholar
Tezel G, Hernandez MR, Wax MB (2001) In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head. Glia 34:178–189. https://doi.org/10.1002/glia.1052
Article CAS PubMed Google Scholar
Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K (2012) The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med 33:579–589. https://doi.org/10.1016/j.mam.2012.02.003
Article CAS PubMed Google Scholar
Wu C, Du M, Yu R, Cheng Y, Wu B, Fu J, Tan W, Zhou Q, Balawi E, Liao ZB (2022) A novel mechanism linking ferroptosis and endoplasmic reticulum stress via the circPtpn14/miR-351-5p/5-LOX signaling in melatonin-mediated treatment of traumatic brain injury. Free Radic Biol Med 178:271–294. https://doi.org/10.1016/j.freeradbiomed.2021.12.007
Article CAS PubMed Google Scholar
Du M, Wu C, Yu R, Cheng Y, Tang Z, Wu B, Fu J, Tan W, Zhou Q, Zhu Z, Balawi E, Huang X, Ma J, Liao ZB (2022) A novel circular RNA, circIgfbp2, links neural plasticity and anxiety through targeting mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after traumatic brain injury. Mol Psychiatry 27:4575–4589. https://doi.org/10.1038/s41380-022-01711-7
Article CAS PubMed PubMed Central Google Scholar
Li J, Yu W, Li XT, Qi SH, Li B (2014) The effects of propofol on mitochondrial dysfunction following focal cerebral ischemia-reperfusion in rats. Neuropharmacology 77:358–368. https://doi.org/10.1016/j.neuropharm.2013.08.029
Article CAS PubMed Google Scholar
Adembri C, Venturi L, Tani A, Chiarugi A, Gramigni E, Cozzi A, Pancani T, De Gaudio RA, Pellegrini-Giampietro DE (2006) Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism. Anesthesiology 104:80–89. https://doi.org/10.1097/00000542-200601000-00014
Article CAS PubMed Google Scholar
Shehabi Y, Serpa Neto A, Bellomo R, Howe BD, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA (2023) Dexmedetomidine and propofol sedation in critically Ill patients and dose-associated 90-day mortality: a secondary cohort analysis of a randomized controlled trial (SPICE III). Am J Respir Crit Care Med 207:876–886. https://doi.org/10.1164/rccm.202206-1208OC
Article CAS PubMed Google Scholar
Liu P, Ewald J, Galvez JH, Head J, Crump D, Bourque G, Basu N, Xia J (2021) Ultrafast functional profiling of RNA-seq data for nonmodel organisms. Genome Res 31:713–720. https://doi.org/10.1101/gr.269894.120
Article PubMed PubMed Central Google Scholar
Liu P, Ewald J, Pang Z, Legrand E, Jeon YS, Sangiovanni J, Hacariz O, Zhou G, Head JA, Basu N, Xia J (2023) ExpressAnalyst: a unified platform for RNA-sequencing analysis in non-model species. Nat Commun 14:2995. https://doi.org/10.1038/s41467-023-38785-y
Article CAS PubMed PubMed Central Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007
Article CAS PubMed PubMed Central Google Scholar
Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, Jagodnik KM, Kropiwnicki E, Wang Z, Ma’ayan A (2019) ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res 47:W212–W224. https://doi.org/10.1093/nar/gkz446
Article CAS PubMed PubMed Central Google Scholar
Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92-97. https://doi.org/10.1093/nar/gkt1248
Article CAS PubMed Google Scholar
Wilson DS, Guenther B, Desplan C, Kuriyan J (1995) High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 82:709–719. https://doi.org/10.1016/0092-8674(95)90468-9
Article CAS PubMed Google Scholar
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. https://doi.org/10.1093/nar/gkx1037
Article CAS PubMed Google Scholar
Diller DJ, Merz KM Jr (2001) High throughput docking for library design and library prioritization. Proteins 43:113–124. https://doi.org/10.1002/1097-0134(20010501)43:2%3c113::aid-prot1023%3e3.0.co;2-t
Article CAS PubMed Google Scholar
Diller DJ, Hobbs DW (2004) Deriving knowledge through data mining high-throughput screening data. J Med Chem 47:6373–6383. https://doi.org/10.1021/jm049902r
Article CAS PubMed Google Scholar
Niu W, Duan Y, Kang Y, Cao X, Xue Q (2022) Propofol improves learning and memory in post-traumatic stress disorder (PTSD) mice via recovering hippocampus synaptic plasticity. Life Sci 293:120349. https://doi.org/10.1016/j.lfs.2022.120349
Comments (0)