Therapeutic Potential of Fingolimod on Psychological Symptoms and Cognitive Function in Neuropsychiatric and Neurological Disorders

Novelli MM, Caramelli P (2010) The influence of neuropsychiatric and functional changes on quality of life in Alzheimer’s disease. Dement Neuropsychologia 4:47–53

Article  Google Scholar 

Sultonova D, Akbarkhodjaeva Z (2018) Neuropsychiatric symptoms impact on quality life of patients with Parkinson’s disease. Parkinsonism Relat Disord 46:e49

Article  Google Scholar 

Brandão PdMF et al (2022) Age, motor dysfunction and neuropsychiatric symptoms impact quality of life in multiple sclerosis. Revista Brasileira De Enfermagem 75:e20210207

Article  PubMed  PubMed Central  Google Scholar 

Allegri RF et al (2006) Neuropsychiatric symptoms as a predictor of caregiver burden in Alzheimer’s disease. Neuropsychiatr Dis Treat 2(1):105–110

PubMed  PubMed Central  Google Scholar 

Short AK, Baram TZ (2019) Early-life adversity and neurological disease: age-old questions and novel answers. Nat Reviews Neurol 15(11):657–669

Article  Google Scholar 

Hong H, Kim BS, Im H-I (2016) Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. Int Neurourol J 20(Suppl 1):S2

Article  PubMed  PubMed Central  Google Scholar 

Cecerska-Heryć E et al (2022) Importance of oxidative stress in the pathogenesis, diagnosis, and monitoring of patients with neuropsychiatric disorders, a review. Neurochem Int 153:105269

Article  PubMed  Google Scholar 

Zorkina Y et al (2020) Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: advantages and limitations. Molecules 25(22):5294

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitra NK, Wadingasafi NANB, Chellian J (2022) Locomotor and histological changes in a cuprizone-induced animal model of multiple sclerosis: comparison between alpha-tocopherol and fingolimod. Res Pharm Sci 17(2):134

Article  PubMed  PubMed Central  Google Scholar 

Wang CC, Kuo JR, Wang SJ (2021) Fingolimod inhibits glutamate release through activation of S1P1 receptors and the G protein βγ subunit-dependent pathway in rat cerebrocortical nerve terminals. Neuropharmacology 185:108451

Article  CAS  PubMed  Google Scholar 

Rajan S et al (2024) Fingolimod exerts neuroprotection by regulating S1PR1 mediated BNIP3-PINK1-Parkin dependent mitophagy in rotenone induced mouse model of Parkinson’s disease. Neurosci Lett 820:137596

Article  CAS  PubMed  Google Scholar 

Sood A et al (2023) Fingolimod alleviates cognitive deficit in type 2 diabetes by promoting Microglial M2 polarization via the pSTAT3-jmjd3 Axis. Mol Neurobiol 60(2):901–922

Article  CAS  PubMed  Google Scholar 

Makled MN, Serrya MS, El-Sheakh AR (2022) Fingolimod ameliorates acetic acid‐induced ulcerative colitis: an insight into its modulatory impact on pro/anti‐inflammatory cytokines and AKT/mTOR signalling, vol 130. Basic & Clinical Pharmacology & Toxicology, pp 569–580. 5

Brunkhorst R, Vutukuri R, Pfeilschifter W (2014) Fingolimod for the treatment of neurological diseases—state of play and future perspectives. Front Cell Neurosci 8:283

Article  PubMed  PubMed Central  Google Scholar 

Yoshii F et al (2017) Neurological safety of fingolimod: an updated review. Clin Exp Neuroimmunol 8:233–243

Article  PubMed  PubMed Central  Google Scholar 

Bascuñana P et al (2020) Fingolimod as a treatment in neurologic disorders beyond multiple sclerosis. Drugs R D 20:197–207

Article  PubMed  PubMed Central  Google Scholar 

Maceyka M et al (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22(1):50–60

Article  CAS  PubMed  Google Scholar 

Weth-Malsch D et al (2016) Ablation of sphingosine 1-phosphate receptor subtype 3 impairs hippocampal neuron excitability in vitro and spatial working memory in vivo. Front Cell Neurosci 10:258

Article  PubMed  PubMed Central  Google Scholar 

Squillace S et al (2022) Sphingosine-1-phosphate receptor 1 activation in the central nervous system drives cisplatin-induced cognitive impairment. J Clin Investig, 132(17)

Jang S et al (2011) Modulation of sphingosine 1-phosphate and tyrosine hydroxylase in the stress-induced anxiety. Neurochem Res 36:258–267

Article  CAS  PubMed  Google Scholar 

Pournajaf S et al (2022) Molecular pharmacology and novel potential therapeutic applications of fingolimod. Front Pharmacol 13:807639

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foster CA et al (2007) Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 323(2):469–475

Article  CAS  PubMed  Google Scholar 

Mandala S et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296(5566):346–349

Article  CAS  PubMed  Google Scholar 

Brinkmann V et al (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277(24):21453–21457

Article  CAS  PubMed  Google Scholar 

Oo ML et al (2007) Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282(12):9082–9089

Article  CAS  PubMed  Google Scholar 

Graler M Goetzl E](2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors FASEB/18: p. 551–553

Matloubian M et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427(6972):355–360

Article  CAS  PubMed  Google Scholar 

Groves A, Kihara Y, Chun J (2013) Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci 328(1–2):9–18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fagan SG, Bechet S, Dev KK (2022) Fingolimod Rescues memory and improves pathological hallmarks in the 3xTg-AD model of Alzheimer’s disease Molecular neurobiology, : pp. 1–14

Zhang J et al (2020) Fingolimod (FTY720) improves postoperative cognitive dysfunction in mice subjected to D-galactose-induced aging. Neural Regeneration Res 15(7):1308

Article  Google Scholar 

Zhao P et al (2017) Neuroprotective effects of fingolimod in mouse models of Parkinson’s disease. FASEB J 31(1):172–179

Article  CAS  PubMed  Google Scholar 

Shang K et al (2020) Fingolimod promotes angiogenesis and attenuates ischemic brain damage via modulating microglial polarization. Brain Res 1726:146509

Article  CAS  PubMed  Google Scholar 

Davy M et al (2023) Evaluation of Temozolomide and Fingolimod treatments in Glioblastoma Preclinical models. Cancers 15(18):4478

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malone K et al (2021) The effect of fingolimod on regulatory T cells in a mouse model of brain ischaemia. J Neuroinflamm 18(1):1–15

Article  Google Scholar 

Marx W et al (2023) Major Depressive Disorder 9(1):44

Google Scholar 

Organization WH Depression-Fact sheets [Internet]. 2020

Jeon SW, Kim Y-K (2018) The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J Inflamm Res, : p. 179–192

Barbosa ML et al (2020) Oxidative stress, antioxidant defense and depressive disorders: a systematic review of biochemical and molecular markers. Neurol Psychiatry Brain Res 36:65–72

Article  Google Scholar 

Mutz J et al (2018) Efficacy and acceptability of non-invasive brain stimulation for the treatment of adult unipolar and bipolar depression: a systematic review and meta-analysis of randomised sham-controlled trials. Neurosci Biobehavioral Reviews 92:291–303

Article 

Comments (0)

No login
gif