Ketogenic Diets Alter the Gut Microbiome, Resulting in Decreased Susceptibility to and Cognitive Impairment in Rats with Pilocarpine-Induced Status Epilepticus

Zuo D et al (2020) The novel estrogen receptor GPER1 decreases epilepsy severity and susceptivity in the hippocampus after status epilepticus. Neurosci Lett 728:134978

Article  CAS  PubMed  Google Scholar 

Thijs RD et al (2019) Epilepsy in adults. Lancet 393(10172):689–701

Article  PubMed  Google Scholar 

Ahola-Erkkilä S et al (2010) Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet 19(10):1974–1984

Article  PubMed  Google Scholar 

Halász P et al (2019) Epilepsy as a derailment of sleep plastic functions may cause chronic cognitive impairment-a theoretical review. Sleep Med Rev 45:31–41

Article  PubMed  Google Scholar 

McDonald TJW, Cervenka MC (2020) Ketogenic diet therapies for seizures and status epilepticus. Semin Neurol 40(6):719–729

Article  PubMed  PubMed Central  Google Scholar 

Sampaio LP (2016) Ketogenic diet for epilepsy treatment. Arq Neuropsiquiatr 74(10):842–848

Article  PubMed  Google Scholar 

Schoeler NE, Cross JH (2016) Ketogenic dietary therapies in adults with epilepsy: a practical guide. Pract Neurol 16(3):208–214

Article  PubMed  Google Scholar 

Wells J et al (2020) Efficacy and safety of a ketogenic diet in children and adolescents with refractory epilepsy-a review. Nutrients. 12(6):1809

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng YQ et al (2020) Proteomics for studying the effects of ketogenic diet against lithium chloride/pilocarpine induced epilepsy in rats. Front Neurosci 14:562853

Article  PubMed  PubMed Central  Google Scholar 

Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bough KJ et al (2006) Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol 60(2):223–235

Article  CAS  PubMed  Google Scholar 

Cheng CM et al (2004) Caloric restriction augments brain glutamic acid decarboxylase-65 and-67 expression. J Neurosci Res 77(2):270–276

Article  CAS  PubMed  Google Scholar 

Dominique IJ et al (2016) Cognitive and behavioral impact of the ketogenic diet in children and adolescents with refractory epilepsy: a randomized controlled trial. Epilepsy Behav 60:153–157

Westfall S et al (2017) Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 74(20):3769–3787

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742

Article  CAS  PubMed  Google Scholar 

Holmes E et al (2012) Therapeutic modulation of microbiota-host metabolic interactions. Sci Transl Med 4(137):137

Article  Google Scholar 

Montiel-Castro AJ et al (2013) The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci 7:70

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nicholson JK et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267

Article  CAS  PubMed  Google Scholar 

Jandhyala SM et al (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amaral FA et al (2008) Commensal microbiota is fundamental for the development of inflammatory pain. Proc Natl Acad Sci U S A 105(6):2193–2197

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

Article  CAS  PubMed  Google Scholar 

de Vos WM, de Vos EA (2012) Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 70(Suppl 1):S45-56

Article  PubMed  Google Scholar 

Ding M et al (2021) Microbiota-gut-brain axis and epilepsy: a review on mechanisms and potential therapeutics. Front Immunol 12:742449

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayer EA, Padua D, Tillisch K (2014) Altered brain-gut axis in autism: comorbidity or causative mechanisms? BioEssays 36(10):933–939

Article  PubMed  Google Scholar 

Park AJ et al (2013) Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 25(9):733-e575

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie G et al (2017) Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol 23(33):6164–6171

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindefeldt M et al (2019) The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microb 5(1):5

Article  Google Scholar 

Zhang Y et al (2018) Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res 145:163–168

Article  PubMed  Google Scholar 

Olson CA et al (2018) The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173(7):1728-1741.e13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sutter R, Rüegg S, Tschudin-Sutter S (2015) Seizures as adverse events of antibiotic drugs: a systematic review. Neurology 85(15):1332–1341

Article  CAS  PubMed  Google Scholar 

Liu KM et al (2022) Ursolic acid protects neurons in temporal lobe epilepsy and cognitive impairment by repressing inflammation and oxidation. Front Pharmacol 13:877898

Article  CAS  PubMed  PubMed Central  Google Scholar 

Racine RJ (1972) Modification of seizure activity by electrical stimulation II Motor seizure. Electroenceph Clin Neurophysiol 32(3):281–294

Article  CAS  PubMed  Google Scholar 

Reikvam DH et al (2011) Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS ONE 6(3):e17996

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif