Weerink MAS, Struys M, Hannivoort LN, Barends CRM, Absalom AR, Colin P (2017) Clinical pharmacokinetics and pharmacodynamics of Dexmedetomidine. Clin Pharmacokinet 56:893–913. https://doi.org/10.1007/s40262-017-0507-7
Article CAS PubMed PubMed Central Google Scholar
Link R, Daunt D, Barsh G, Chruscinski A, Kobilka B (1992) Cloning of two mouse genes encoding alpha 2-adrenergic receptor subtypes and identification of a single amino acid in the mouse alpha 2-C10 homolog responsible for an interspecies variation in antagonist binding. Mol Pharmacol 42:16–27
Wang CD, Buck MA, Fraser CM (1991) Site-directed mutagenesis of alpha 2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists. Mol Pharmacol 40:168–179
Ramos BP, Arnsten AF (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113:523–536. https://doi.org/10.1016/j.pharmthera.2006.11.006
Article CAS PubMed Google Scholar
Maletic V, Eramo A, Gwin K, Offord SJ, Duffy RA (2017) The role of Norepinephrine and its α-Adrenergic receptors in the pathophysiology and treatment of major depressive disorder and Schizophrenia: a systematic review. Front Psychiatry 8:42. https://doi.org/10.3389/fpsyt.2017.00042
Article PubMed PubMed Central Google Scholar
Sun S, Wang J, Bao N, Chen Y, Wang J (2017) Comparison of dexmedetomidine and fentanyl as local anesthetic adjuvants in spinal anesthesia: a systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther 11:3413–3424. https://doi.org/10.2147/DDDT.S146092
Article CAS PubMed PubMed Central Google Scholar
Barends CR, Absalom A, van Minnen B, Vissink A, Visser A (2017) Dexmedetomidine versus Midazolam in Procedural Sedation. A systematic review of efficacy and safety. PLoS ONE 12:e0169525. https://doi.org/10.1371/journal.pone.0169525
Article CAS PubMed PubMed Central Google Scholar
Lin Y, Zhang R, Shen W, Chen Q, Zhu Y, Li J, Chi W, Gan X (2020) Dexmedetomidine versus other sedatives for non-painful pediatric examinations: a systematic review and meta-analysis of randomized controlled trials. J Clin Anesth 62:109736. https://doi.org/10.1016/j.jclinane.2020.109736
Article CAS PubMed Google Scholar
Segal IS, Vickery RG, Walton JK, Doze VA, Maze M (1988) Dexmedetomidine Diminishes Halothane Anesthetic Requirements in Rats Through a PostsynapticAlphaz Adrenergic Receptor. Anesthesiology
Brown EN, Pavone KJ, Naranjo M (2018) Multimodal General Anesthesia: theory and practice. Anesth Analg 127:1246–1258. https://doi.org/10.1213/ane.0000000000003668
Article PubMed PubMed Central Google Scholar
Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ (2000) Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg 90:699–705. https://doi.org/10.1097/00000539-200003000-00035
Article CAS PubMed Google Scholar
Lobo FA, Wagemakers M, Absalom AR (2016) Anaesthesia for awake craniotomy. Br J Anaesth 116:740–744. https://doi.org/10.1093/bja/aew113
Article CAS PubMed Google Scholar
Qu JZ, Mueller A, McKay TB, Westover MB, Shelton KT, Shaefi S, D’Alessandro DA, Berra L, Brown EN, Houle TT, Akeju O (2023) Nighttime dexmedetomidine for delirium prevention in non-mechanically ventilated patients after cardiac surgery (MINDDS): a single-centre, parallel-arm, randomised, placebo-controlled superiority trial. EClinicalMedicine 56:101796. https://doi.org/10.1016/j.eclinm.2022.101796
Silverstein BH, Parkar A, Groenhout T, Fracz Z, Fryzel AM, Fields CW, Nelson A, Liu T, Vanini G, Mashour GA, Pal D (2024) Effect of prolonged sedation with dexmedetomidine, midazolam, propofol, and sevoflurane on sleep homeostasis in rats. Br J Anaesth 132:1248–1259. https://doi.org/10.1016/j.bja.2023.11.014
Article CAS PubMed Google Scholar
Feng ZX, Dong H, Qu WM, Zhang W (2018) Oral delivered dexmedetomidine promotes and consolidates non-rapid Eye Movement Sleep via Sleep-Wake Regulation systems in mice. Front Pharmacol 9:1196. https://doi.org/10.3389/fphar.2018.01196
Article CAS PubMed PubMed Central Google Scholar
Zhang Z, Ferretti V, Guntan I, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG, Yustos R, Pillidge ZE, Harding EC, Wisden W, Franks NP (2015) Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha2 adrenergic agonists. Nat Neurosci 18:553–561. https://doi.org/10.1038/nn.3957
Article CAS PubMed PubMed Central Google Scholar
Qiu G, Wu Y, Yang Z, Li L, Zhu X, Wang Y, Sun W, Dong H, Li Y, Hu J (2020) Dexmedetomidine activation of dopamine neurons in the ventral Tegmental Area attenuates the depth of Sedation in mice. Anesthesiology 133:377–392. https://doi.org/10.1097/ALN.0000000000003347
Article CAS PubMed Google Scholar
Bronzino JD, Stern WC, Leahy JP, Morgane PJ (1976) Sleep cycles in cats during chronic electrical stimulation of the area postrema and the anterior raphe. Brain Res Bull 1:235–239. https://doi.org/10.1016/0361-9230(76)90073-3
Article CAS PubMed Google Scholar
Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F (2019) A common neuroendocrine substrate for Diverse General anesthetics and sleep. Neuron 102:1053–1065e1054. https://doi.org/10.1016/j.neuron.2019.03.033
Article CAS PubMed PubMed Central Google Scholar
Lemke SM, Ramanathan DS, Darevksy D, Egert D, Berke JD, Ganguly K (2021) Coupling between motor cortex and striatum increases during sleep over long-term skill learning. Elife 10. https://doi.org/10.7554/eLife.64303
Li H (2023) A preliminary study of brain response region in mice after intraperitoneal injection of dexmedetomidine. Master, Anhui Medical University
Taylor NE, Van Dort CJ, Kenny JD, Pei J, Guidera JA, Vlasov KY, Lee JT, Boyden ES, Brown EN, Solt K (2016) Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci U S A 113:12826–12831. https://doi.org/10.1073/pnas.1614340113
Article CAS PubMed PubMed Central Google Scholar
Mason KP, O’Mahony E, Zurakowski D, Libenson MH (2009) Effects of dexmedetomidine sedation on the EEG in children. Paediatr Anaesth 19:1175–1183. https://doi.org/10.1111/j.1460-9592.2009.03160.x
Lin N, Vutskits L, Bebawy JF, Gelb AW (2019) Perspectives on Dexmedetomidine Use for Neurosurgical patients. J Neurosurg Anesthesiol 31:366–377. https://doi.org/10.1097/ana.0000000000000554
Rozet I (2008) Anesthesia for functional neurosurgery: the role of dexmedetomidine. Curr Opin Anaesthesiol 21:537–543. https://doi.org/10.1097/ACO.0b013e32830edafd
Mantz J, Josserand J, Hamada S (2011) Dexmedetomidine: new insights. Eur J Anaesthesiol 28:3–6. https://doi.org/10.1097/EJA.0b013e32833e266d
Article CAS PubMed Google Scholar
Chen CR, Zhong YH, Jiang S, Xu W, Xiao L, Wang Z, Qu WM, Huang ZL (2021) Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife 10. https://doi.org/10.7554/eLife.69909
Zhang X, Lei B, Yuan Y, Zhang L, Hu L, Jin S, Kang B, Liao X, Sun W, Xu F, Zhong Y, Hu J, Qi H (2020) Brain control of humoral immune responses amenable to behavioural modulation. Nature 581:204–208. https://doi.org/10.1038/s41586-020-2235-7
Article CAS PubMed Google Scholar
Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, Lewis EM, Luo L, Deisseroth K, Dölen G, Malenka RC (2017) Gating of social reward by oxytocin in the ventral tegmental area. Science 357:1406–1411. https://doi.org/10.1126/science.aan4994
Article CAS PubMed PubMed Central Google Scholar
Li MM, Madara JC, Steger JS, Krashes MJ, Balthasar N, Campbell JN, Resch JM, Conley NJ, Garfield AS, Lowell BB (2019) The Paraventricular Hypothalamus regulates Satiety and prevents obesity via two genetically distinct circuits. Neuron 102:653–667e656. https://doi.org/10.1016/j.neuron.2019.02.028
Comments (0)