Dexmedetomidine Promotes NREM Sleep by Depressing Oxytocin Neurons in the Paraventricular Nucleus in Mice

Weerink MAS, Struys M, Hannivoort LN, Barends CRM, Absalom AR, Colin P (2017) Clinical pharmacokinetics and pharmacodynamics of Dexmedetomidine. Clin Pharmacokinet 56:893–913. https://doi.org/10.1007/s40262-017-0507-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Link R, Daunt D, Barsh G, Chruscinski A, Kobilka B (1992) Cloning of two mouse genes encoding alpha 2-adrenergic receptor subtypes and identification of a single amino acid in the mouse alpha 2-C10 homolog responsible for an interspecies variation in antagonist binding. Mol Pharmacol 42:16–27

CAS  PubMed  Google Scholar 

Wang CD, Buck MA, Fraser CM (1991) Site-directed mutagenesis of alpha 2A-adrenergic receptors: identification of amino acids involved in ligand binding and receptor activation by agonists. Mol Pharmacol 40:168–179

CAS  PubMed  Google Scholar 

Ramos BP, Arnsten AF (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113:523–536. https://doi.org/10.1016/j.pharmthera.2006.11.006

Article  CAS  PubMed  Google Scholar 

Maletic V, Eramo A, Gwin K, Offord SJ, Duffy RA (2017) The role of Norepinephrine and its α-Adrenergic receptors in the pathophysiology and treatment of major depressive disorder and Schizophrenia: a systematic review. Front Psychiatry 8:42. https://doi.org/10.3389/fpsyt.2017.00042

Article  PubMed  PubMed Central  Google Scholar 

Sun S, Wang J, Bao N, Chen Y, Wang J (2017) Comparison of dexmedetomidine and fentanyl as local anesthetic adjuvants in spinal anesthesia: a systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther 11:3413–3424. https://doi.org/10.2147/DDDT.S146092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barends CR, Absalom A, van Minnen B, Vissink A, Visser A (2017) Dexmedetomidine versus Midazolam in Procedural Sedation. A systematic review of efficacy and safety. PLoS ONE 12:e0169525. https://doi.org/10.1371/journal.pone.0169525

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Y, Zhang R, Shen W, Chen Q, Zhu Y, Li J, Chi W, Gan X (2020) Dexmedetomidine versus other sedatives for non-painful pediatric examinations: a systematic review and meta-analysis of randomized controlled trials. J Clin Anesth 62:109736. https://doi.org/10.1016/j.jclinane.2020.109736

Article  CAS  PubMed  Google Scholar 

Segal IS, Vickery RG, Walton JK, Doze VA, Maze M (1988) Dexmedetomidine Diminishes Halothane Anesthetic Requirements in Rats Through a PostsynapticAlphaz Adrenergic Receptor. Anesthesiology

Brown EN, Pavone KJ, Naranjo M (2018) Multimodal General Anesthesia: theory and practice. Anesth Analg 127:1246–1258. https://doi.org/10.1213/ane.0000000000003668

Article  PubMed  PubMed Central  Google Scholar 

Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ (2000) Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg 90:699–705. https://doi.org/10.1097/00000539-200003000-00035

Article  CAS  PubMed  Google Scholar 

Lobo FA, Wagemakers M, Absalom AR (2016) Anaesthesia for awake craniotomy. Br J Anaesth 116:740–744. https://doi.org/10.1093/bja/aew113

Article  CAS  PubMed  Google Scholar 

Qu JZ, Mueller A, McKay TB, Westover MB, Shelton KT, Shaefi S, D’Alessandro DA, Berra L, Brown EN, Houle TT, Akeju O (2023) Nighttime dexmedetomidine for delirium prevention in non-mechanically ventilated patients after cardiac surgery (MINDDS): a single-centre, parallel-arm, randomised, placebo-controlled superiority trial. EClinicalMedicine 56:101796. https://doi.org/10.1016/j.eclinm.2022.101796

Article  PubMed  Google Scholar 

Silverstein BH, Parkar A, Groenhout T, Fracz Z, Fryzel AM, Fields CW, Nelson A, Liu T, Vanini G, Mashour GA, Pal D (2024) Effect of prolonged sedation with dexmedetomidine, midazolam, propofol, and sevoflurane on sleep homeostasis in rats. Br J Anaesth 132:1248–1259. https://doi.org/10.1016/j.bja.2023.11.014

Article  CAS  PubMed  Google Scholar 

Feng ZX, Dong H, Qu WM, Zhang W (2018) Oral delivered dexmedetomidine promotes and consolidates non-rapid Eye Movement Sleep via Sleep-Wake Regulation systems in mice. Front Pharmacol 9:1196. https://doi.org/10.3389/fphar.2018.01196

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Ferretti V, Guntan I, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG, Yustos R, Pillidge ZE, Harding EC, Wisden W, Franks NP (2015) Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha2 adrenergic agonists. Nat Neurosci 18:553–561. https://doi.org/10.1038/nn.3957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu G, Wu Y, Yang Z, Li L, Zhu X, Wang Y, Sun W, Dong H, Li Y, Hu J (2020) Dexmedetomidine activation of dopamine neurons in the ventral Tegmental Area attenuates the depth of Sedation in mice. Anesthesiology 133:377–392. https://doi.org/10.1097/ALN.0000000000003347

Article  CAS  PubMed  Google Scholar 

Bronzino JD, Stern WC, Leahy JP, Morgane PJ (1976) Sleep cycles in cats during chronic electrical stimulation of the area postrema and the anterior raphe. Brain Res Bull 1:235–239. https://doi.org/10.1016/0361-9230(76)90073-3

Article  CAS  PubMed  Google Scholar 

Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F (2019) A common neuroendocrine substrate for Diverse General anesthetics and sleep. Neuron 102:1053–1065e1054. https://doi.org/10.1016/j.neuron.2019.03.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemke SM, Ramanathan DS, Darevksy D, Egert D, Berke JD, Ganguly K (2021) Coupling between motor cortex and striatum increases during sleep over long-term skill learning. Elife 10. https://doi.org/10.7554/eLife.64303

Li H (2023) A preliminary study of brain response region in mice after intraperitoneal injection of dexmedetomidine. Master, Anhui Medical University

Taylor NE, Van Dort CJ, Kenny JD, Pei J, Guidera JA, Vlasov KY, Lee JT, Boyden ES, Brown EN, Solt K (2016) Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci U S A 113:12826–12831. https://doi.org/10.1073/pnas.1614340113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mason KP, O’Mahony E, Zurakowski D, Libenson MH (2009) Effects of dexmedetomidine sedation on the EEG in children. Paediatr Anaesth 19:1175–1183. https://doi.org/10.1111/j.1460-9592.2009.03160.x

Article  PubMed  Google Scholar 

Lin N, Vutskits L, Bebawy JF, Gelb AW (2019) Perspectives on Dexmedetomidine Use for Neurosurgical patients. J Neurosurg Anesthesiol 31:366–377. https://doi.org/10.1097/ana.0000000000000554

Article  PubMed  Google Scholar 

Rozet I (2008) Anesthesia for functional neurosurgery: the role of dexmedetomidine. Curr Opin Anaesthesiol 21:537–543. https://doi.org/10.1097/ACO.0b013e32830edafd

Article  PubMed  Google Scholar 

Mantz J, Josserand J, Hamada S (2011) Dexmedetomidine: new insights. Eur J Anaesthesiol 28:3–6. https://doi.org/10.1097/EJA.0b013e32833e266d

Article  CAS  PubMed  Google Scholar 

Chen CR, Zhong YH, Jiang S, Xu W, Xiao L, Wang Z, Qu WM, Huang ZL (2021) Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife 10. https://doi.org/10.7554/eLife.69909

Zhang X, Lei B, Yuan Y, Zhang L, Hu L, Jin S, Kang B, Liao X, Sun W, Xu F, Zhong Y, Hu J, Qi H (2020) Brain control of humoral immune responses amenable to behavioural modulation. Nature 581:204–208. https://doi.org/10.1038/s41586-020-2235-7

Article  CAS  PubMed  Google Scholar 

Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, Lewis EM, Luo L, Deisseroth K, Dölen G, Malenka RC (2017) Gating of social reward by oxytocin in the ventral tegmental area. Science 357:1406–1411. https://doi.org/10.1126/science.aan4994

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li MM, Madara JC, Steger JS, Krashes MJ, Balthasar N, Campbell JN, Resch JM, Conley NJ, Garfield AS, Lowell BB (2019) The Paraventricular Hypothalamus regulates Satiety and prevents obesity via two genetically distinct circuits. Neuron 102:653–667e656. https://doi.org/10.1016/j.neuron.2019.02.028

Article 

Comments (0)

No login
gif