Single-cell RNA Sequencing Identifies a Novel Subtype of Microglia with High Cd74 Expression that Facilitates White Matter Inflammation During Chronic Cerebral Hypoperfusion

O’Brien JT, Thomas A (2015) Vascular dementia. Lancet 386:1698–1706. https://doi.org/10.1016/S0140-6736(15)00463-8

Article  PubMed  Google Scholar 

Jia L, Du Y, Chu L et al (2020) Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health 5:e661–e671. https://doi.org/10.1016/S2468-2667(20)30185-7

Article  PubMed  Google Scholar 

Jhoo JH, Kim KW, Huh Y et al (2008) Prevalence of dementia and its subtypes in an elderly urban Korean population: results from the Korean Longitudinal Study on Health and Aging (KLoSHA). Dement Geriatr Cogn Disord 26:270–276. https://doi.org/10.1159/000160960

Article  PubMed  Google Scholar 

Love S, Miners JS (2015) White matter hypoperfusion and damage in dementia: post-mortem assessment. Brain Pathol 25:99–107. https://doi.org/10.1111/bpa.12223

Article  PubMed  Google Scholar 

Prins ND, Scheltens P (2015) White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 11:157–165. https://doi.org/10.1038/nrneurol.2015.10

Article  PubMed  Google Scholar 

Wu X, Ya J, Zhou D et al (2021) Pathogeneses and imaging features of cerebral white matter lesions of vascular origins. Aging Dis 12:2031–2051. https://doi.org/10.14336/AD.2021.0414https://doi.org/10.14336/AD.2021.0414

Article  PubMed  PubMed Central  Google Scholar 

Jin H, Ding Z, Lian S et al (2020) Prevalence and risk factors of white matter lesions in tibetan patients without acute stroke. Stroke 51:149–153. https://doi.org/10.1161/STROKEAHA.119.027115

Article  PubMed  Google Scholar 

Du SQ, Wang XR, Xiao LY et al (2017) Molecular mechanisms of vascular dementia: what can be learned from animal models of chronic cerebral hypoperfusion? Mol Neurobiol 54:3670–3682. https://doi.org/10.1007/s12035-016-9915-1

Article  CAS  PubMed  Google Scholar 

Poh L, Sim WL, Jo DG et al (2022) The role of inflammasomes in vascular cognitive impairment. Mol Neurodegener 17:4. https://doi.org/10.1186/s13024-021-00506-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng P, Zuo X, Ren Y et al (2016) Adenosine A1-receptors modulate mTOR signaling to regulate white matter inflammatory lesions induced by chronic cerebral hypoperfusion. Neurochem Res 41:3272–3277. https://doi.org/10.1007/s11064-016-2056-0

Article  CAS  PubMed  Google Scholar 

Simpson JE, Ince PG, Higham CE et al (2007) Microglial activation in white matter lesions and nonlesional white matter of ageing brains. Neuropathol Appl Neurobiol 33:670–683. https://doi.org/10.1111/j.1365-2990.2007.00890.x

Article  CAS  PubMed  Google Scholar 

Cervellati C, Trentini A, Pecorelli A et al (2020) Inflammation in neurological disorders: the thin boundary between brain and periphery. Antioxid Redox Signal 33:191–210. https://doi.org/10.1089/ars.2020.8076

Article  CAS  PubMed  Google Scholar 

Xiao Y, Guan T, Yang X et al (2023) Baicalin facilitates remyelination and suppresses neuroinflammation in rats with chronic cerebral hypoperfusion by activating Wnt/β-catenin and inhibiting NF-κB signaling. Behav Brain Res 442:114301. https://doi.org/10.1016/j.bbr.2023.114301

Article  CAS  PubMed  Google Scholar 

Su SH, Chen M, Wu YF et al (2023) Fecal microbiota transplantation and short-chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion. CNS Neurosci Ther 00:1–17. https://doi.org/10.1111/cns.14089

Article  CAS  Google Scholar 

Yu M, Zheng X, Cheng F et al (2022) Metformin, rapamycin, or nicotinamide mononucleotide pretreatment attenuate cognitive impairment after cerebral hypoperfusion by inhibiting microglial phagocytosis. Front Neurol 13:903565. https://doi.org/10.3389/fneur.2022.903565

Article  PubMed  PubMed Central  Google Scholar 

Santiago A, Soares LM, Schepers M et al (2018) Roflumilast promotes memory recovery and attenuates white matter injury in aged rats subjected to chronic cerebral hypoperfusion. Neuropharmacology 138:360–370. https://doi.org/10.1016/j.neuropharm.2018.06.019

Article  CAS  PubMed  Google Scholar 

Caffarel MM, Braza MS (2022) Microglia and metastases to the central nervous system: victim, ravager, or something else? J Exp Clin Cancer Res 41:327. https://doi.org/10.1186/s13046-022-02535-7

Article  PubMed  PubMed Central  Google Scholar 

Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991. https://doi.org/10.1038/nn.4338

Article  CAS  PubMed  Google Scholar 

Healy LM, Zia S, Plemel JR (2022) Towards a definition of microglia heterogeneity. Commun Biol 5:1114. https://doi.org/10.1038/s42003-022-04081-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasel P, Aisenberg WH, Bennett FC et al (2023) Molecular and metabolic heterogeneity of astrocytes and microglia. Cell Metab 35:555–570. https://doi.org/10.1016/j.cmet.2023.03.006

Article  CAS  PubMed  Google Scholar 

Keren-Shaul H, Spinrad A, Weiner A et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290. https://doi.org/10.1016/j.cell.2017.05.018

Article  CAS  PubMed  Google Scholar 

Kim S, Lee W, Jo H et al (2022) The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biol 54:102347. https://doi.org/10.1016/j.redox.2022.102347

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan F, Pang L, Dunterman M et al (2023) Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J Clin Invest 133:e163446. https://doi.org/10.1172/JCI163446

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y, He X, Kawaguchi R et al (2020) Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587:613–618. https://doi.org/10.1038/s41586-020-2795-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farkas E, Luiten PG, Bari F et al (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54:162–180. https://doi.org/10.1016/j.brainresrev.2007.01.003

Article  CAS  PubMed  Google Scholar 

Wang Y, Cheng W, Chen X et al (2023) Serum proteomics identified TAFI as a potential molecule facilitating the Migration of Peripheral monocytes to Damaged White Matter during Chronic Cerebral Hypoperfusion. Neurochem Res https//. https://doi.org/10.1007/s11064-023-04050-3

Article  Google Scholar 

Pan J, Wan J (2020) Methodological comparison of FACS and MACS isolation of enriched microglia and astrocytes from mouse brain. J Immunol Methods 486:112834. https://doi.org/10.1016/j.jim.2020.112834

Article  CAS  PubMed  Google Scholar 

Zheng GX, Terry JM, Belgrader P et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1038/ncomms14049

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif