Thijs RD, Surges R, O’Brien TJ et al (2019) Epilepsy in adults. Lancet 393(10172):689–701. https://doi.org/10.1016/S0140-6736
Sills GJ, Rogawski MA (2020) Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 168:107966. https://doi.org/10.1016/j.neuropharm.2020.107966. PMID: 32120063
Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73(1):1–60. https://doi.org/10.1016/j.pneurobio.2004.03.009. PMID: 15193778
Eyo UB, Murugan M, Wu LJ (2017) Microglia-Neuron communication in Epilepsy. Glia 65(1):5–18. https://doi.org/10.1002/glia.23006. PMID: 27189853; PMCID: PMC5116010
Ferlazzo E, Sueri C, Gasparini S et al (2017) Methodological issues associated with clinical trials in epilepsy. Expert Rev Clin Pharmacol 10(10):1103–1108. https://doi.org/10.1080/17512433.2017.1356720. PMID: 28715945
Husemann J, Loike JD, Anankov R et al (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40(2):195–205. https://doi.org/10.1002/glia.10148. PMID: 12379907
Srivastava RA (2003) Scavenger receptor class B type I expression in murine brain and regulation by estrogen and dietary cholesterol. J Neurol Sci 210(1–2):11–18. https://doi.org/10.1016/s0022-510x(03)00006-6. PMID: 12736081
Article CAS PubMed Google Scholar
Prior R, Wihl G, Urmoneit B, Apolipoprotein E (2000) smooth muscle cells and the pathogenesis of cerebral amyloid angiopathy: the potential role of impaired cerebrovascular A beta clearance. Ann N Y Acad Sci 903:180-6. https://doi.org/10.1111/j.1749-6632.2000.tb06367.x. PMID: 10818506
Ohgami N 1, Nagai R, Miyazaki A et al (2001) Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J Biol Chem 276(16):13348–13355. https://doi.org/10.1074/jbc.M011613200. Epub 2001 Jan 17. PMID: 11278947
Tran-Dinh A, Levoye A, Couret D et al (2020) High-Density Lipoprotein Therapy in Stroke: Evaluation of Endothelial SR-BI-Dependent Neuroprotective Effects. Int J Mol Sci 22(1):106. https://doi.org/10.3390/ijms22010106. PMID: 33374266
Chang EH, Rigotti A, Huerta PT (2009) Age-related influence of the HDL receptor SR-BI on synaptic plasticity and cognition. Neurobiol Aging 30(3): 407 – 19. https://doi.org/10.1016/j.neurobiolaging.2007.07.006. Epub 2007 Aug 23. PMID: 17719144
Koudinov AR, Koudinova NV (2001) Essential role for cholesterol in synaptic plasticity and neuronal degeneration. Faseb J 15(10):1858-60. https://doi.org/10.1096/fj.00-0815fje. PMID: 11481254
Rusina E, Bernard C, Williamson A (2021) The Kainic Acid Models of Temporal Lobe Epilepsy. eNeuro 8(2):ENEURO.0337-20.2021. https://doi.org/10.1523/ENEURO.0337-20.2021. PMID: 33658312
Lévesque M, Avoli M (2013) The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 37(10 Pt 2):2887-99. https://doi.org/10.1016/j.neubiorev.2013.10.011. PMID: 24184743
Nagisa Sada S, Lee T, Katsu et al (2015) Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 347(6228):1362-7. https://doi.org/10.1126/science.aaa1299. PMID: 25792327
Yang Y, Tian X, Xu D et al (2018) GPR40 modulates epileptic seizure and NMDA receptor function. Sci Adv 4(10):eaau2357. https://doi.org/10.1126/sciadv.aau2357. PMID: 30345361
Gardoni F, Stanic J, Scheggia D et al (2021) NMDA and AMPA Receptor Autoantibodies in Brain Disorders: From Molecular Mechanisms to Clinical Features. Cells 10(1):77. https://doi.org/10.3390/cells10010077. PMID: 33466431
Gardoni F, Di Luca M (2006) New targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 545(1):2–10. https://doi.org/10.1016/j.ejphar.2006.06.022. PMID: 16831414
Lee JH, Kim JY, Noh S et al (2021) Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590(7847):612–617. https://doi.org/10.1038/s41586-020-03060-3. PMID: 33361813
Article CAS PubMed Google Scholar
Zhu Y, Huang D, Zhao Z et al (2021) Bioinformatic analysis identifies potential key genes of epilepsy. PLoS One 16(9):e0254326. https://doi.org/10.1371/journal.pone.0254326. PMID: 34555062
Wolinski P, Ksiazek-Winiarek D, Glabinski A (2022) Cytokines and Neurodegeneration in Epileptogenesis. Brain Sci 12(3):380. https://doi.org/10.3390/brainsci12030380. PMID: 35326336
Han T et al (2021) Analysis and Construction of a Molecular Diagnosis Model of Drug-Resistant Epilepsy Based on Bioinformatics. Front Mol Biosci 8:683032. https://doi.org/10.3389/fmolb.2021.683032. PMID: 34805265
Runtz L, Girard B, Toussenot M et al (2018) Hepatic and hippocampal cytochrome P450 enzyme overexpression during spontaneous recurrent seizures. Epilepsia 59(1):123–134. https://doi.org/10.1111/epi.13942. PMID: 29125184
Kondratiuk I, Plucinska G, Miszczuk D et al (2015) Epileptogenesis following Kainic Acid-Induced Status Epilepticus in Cyclin D2 Knock-Out Mice with Diminished Adult Neurogenesis. PLoS One 10(5):e0128285. https://doi.org/10.1371/journal.pone.0128285. PMID: 26020770
Fu Y, Liu D, Guo J et al (2020) Dynamic Change of Shanks Gene mRNA Expression and DNA Methylation in Epileptic Rat Model and Human Patients. Mol Neurobiol 57(9):3712–3726. https://doi.org/10.1007/s12035-020-01968-5. PMID: 32564287
Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18(3):147–157. https://doi.org/10.1038/nrn.2016.183. PMID: 28179641
Celli R, Santolini I, Guiducci M et al (2017) The α2δ Subunit and Absence Epilepsy: Beyond Calcium Channels? Curr Neuropharmacol 15(6):918–925. https://doi.org/10.2174/1570159X15666170309105451. PMID: 28290248
Schöpf CL, Ablinger C, Geisler SM et al (2021) Presynaptic α2δ subunits are key organizers of glutamatergic synapses. Proc Natl Acad Sci U S A 118(14):e1920827118. https://doi.org/10.1073/pnas.1920827118. PMID: 33782113
Van Hoeymissen E, Held K, Nogueira Freitas AC et al (2020) Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy. Elife 9:e57190. https://doi.org/10.7554/eLife.57190. PMID: 32427099
Holter J, Carter D, Leresche N et al (2005) A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy. J Mol Neurosci 25(1):37–51. https://doi.org/10.1385/JMN:25:1:037. PMID: 15781965
Article CAS PubMed Google Scholar
Kim JE, Lee DS, Kang TC (2022) Sp1-Mediated Prdx6 Upregulation Leads to Clasmatodendrosis by Increasing Its aiPLA2 Activity in the CA1 Astrocytes in Chronic Epilepsy Rats. Antioxidants (Basel) 11(10):1883. https://doi.org/10.3390/antiox11101883. PMID: 36290607
Wang XD, Liu S, Lu H et al (2021) Analysis of Shared Genetic Regulatory Networks for Alzheimer’s Disease and Epilepsy. Biomed Res Int 2021:6692974. https://doi.org/10.1155/2021/6692974. PMID: 34697589
Tang S, Terzic B, Wang IJ et al (2019) Altered NMDAR signaling underlies autistic-like features in mouse models of CDKL5 deficiency disorder. Nat Commun 10(1):2655.https://doi.org/10.1038/s41467-019-10689-w. PMID: 31201320
Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823 – 47. https://doi.org/10.1146/annurev.biochem.76.060805.160029. PMID: 17243894
Beamer E, Kuchukulla M, Boison D et al (2021) ATP and adenosine-two players in the control of seizures and epilepsy development. Prog Neurobiol 204:102105. https://doi.org/10.1016/j.pneurobio.2021.102105. Epub 2021 Jun 16. PMID: 34144123
Article CAS PubMed PubMed Central Google Scholar
Riquelme J, Wellmann M, Sotomayor-Zárate R et al (2020) Gliotransmission: a Novel Target for the development of antiseizure drugs. Neuroscientist 26(4):293–309. https://doi.org/10.1177/1073858420901474. Epub 2020 Jan 24. PMID: 31976817
Article CAS PubMed Google Scholar
Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15(8):459–472. https://doi.org/10.1038/s41582-019-0217-x. PMID: 31263255
Purnell BS, Alves M, Boison D (2023) Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 179:106058. https://doi.org/10.1016/j.nbd.2023.106058. PMID: 36868484
Andrade A, Brennecke A, Mallat S et al (2019) Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 20(14):3537. https://doi.org/10.3390/ijms20143537. PMID: 31331039
Bourinet E, Francois A, Laffray S (2016) T-type calcium channels in neuropathic pain. Pain 157(Suppl 1):S15-S22. https://doi.org/10.1097/j.pain.0000000000000469. PMID: 26785151
Heyes S, Pratt WS, Rees E et al (2015) Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 134:36–54. https://doi.org/10.1016/j.pneurobio.2015.09.002. PMID: 26386135
Pietrobon D (2013) Calcium channels and migraine. Biochim Biophys Acta 1828(7):1655-65. https://doi.org/10.1016/j.bbamem.2012.11.012. PMID: 23165010
Rajakulendran S, Hanna MG (2016) The Role of Calcium Channels in Epilepsy. Cold Spring Harb Perspect Med 6(1):a022723. https://doi.org/10.1101/cshperspect.a022723. PMID: 26729757
Striessnig J (2016) Voltage-gated calcium channels - from basic mechanisms to disease. J Physiol 594(20):5817–5821. https://doi.org/10.1113/JP272619. PMID: 27739079
Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 6(10):933-8. https://doi.org/10.1016/S1474-4422(07)70246-6. PMID: 17884683
Zamponi GW (2016) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 15(1):19–34. https://doi.org/10.1038/nrd.2015.5. PMID: 26542451
Rebecca L, Cole 1 SM, Lechner, Mark E, Williams (2005) Differential distribution of voltage-gated calcium channel alpha-2 delta (alpha2delta) subunit mRNA-containing cells in the rat central nervous system and the dorsal root ganglia. J Comp Neurol 491(3):246 – 69. https://doi.org/10.1002/cne.20693. PMID: 16134135
Gee NS, Brown JP, Dissanayake VU et al (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 271(10):5768-76. https://doi.org/10.1074/jbc.271.10.5768. PMID: 8621444
Kurshan PT, Oztan A, Schwarz TL (2009) Presynaptic alpha2delta-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions. Nat Neurosci 12(11):1415-23. https://doi.org/10.1038/nn.2417. PMID: 19820706
Eroglu C, Allen NJ, Susman MW et al (2009) Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139(2):380 – 92. https://doi.org/10.1016/j.cell.2009.09.025. PMID: 19818485
Risher WC, Kim N, Koh S et al (2018) Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. J Cell Biol 217(10):3747–3765. https://doi.org/10.1083/jcb.201802057. PMID: 30054448
Faria LC, Gu F, Parada I et al (2017) Epileptiform activity and behavioral arrests in mice overexpressing the calcium channel subunit α2δ-1. Neurobiol Dis 102:70–80. https://doi.org/10.1016/j.nbd.2017.01.009. PMID: 28193459
Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682 – 96. https://doi.org/10.1038/nrn2911. PMID: 20842175
Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. https://doi.org/10.1038/nrn3504. PMID: 23686171
Alim I, Teves L, Li R et al (2013) Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci 33(44):17264–17277. https://doi.org/10.1523/JNEUROSCI.1729-13.2013
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Tian X, Lu X et al (2019) TMEM25 modulates neuronal excitability and NMDA receptor subunit NR2B degradation. J Clin Invest 129(9):3864–3876. https://doi.org/10.1172/JCI122599. PMID: 31424425
Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279 – 93. https://doi.org/10.1016/j.neuron.2014.03.030. PMID: 24742457
Comments (0)