Establishing Virtual Bioequivalence and Clinically Relevant Specifications for Omeprazole Enteric-Coated Capsules by Incorporating Dissolution Data in PBPK Modeling

Dean L, Kane M. Omeprazole therapy and CYP2C19 genotype. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kattman BL, Malheiro AJ, editors. Medical Genetics Summaries. Bethesda (MD): National Center for Biotechnology Information (US); 2012.

Cederberg C, Andersson T, Skanberg I. Omeprazole: pharmacokinetics and metabolism in man. Scand J Gastroenterol. 1989;166:33–40. https://doi.org/10.3109/00365528909091241.

Article  CAS  Google Scholar 

Sachs G, Shin JM, Howden CW. Review article: the clinical pharmacology of proton pump inhibitors. Aliment Pharmacol Ther. 2006;23(Suppl 2):2–8. https://doi.org/10.1111/j.1365-2036.2006.02943.x.

Article  CAS  PubMed  Google Scholar 

Horn JR, Howden CW. Review article: similarities and differences among delayed-release proton-pump inhibitor formulations. Aliment Pharmacol Ther. 2005;22(Suppl 3):20–4. https://doi.org/10.1111/j.1365-2036.2005.02714.x.

Article  CAS  PubMed  Google Scholar 

FDA. Guidance for industry: Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Silver Spring: FDA; [cited 2018 05–27]; Available from: https://www.gmp-compliance.org/files/guidemgr/UCM070246.pdf.

Hofsass MA, Dressman JB. The Discriminatory Power of the BCS-Based Biowaiver: A Retrospective With Focus on Essential Medicines. J Pharm Sci. 2019;108(9):2824–37. https://doi.org/10.1016/j.xphs.2019.04.030.

Article  CAS  PubMed  Google Scholar 

Zhao L, Kim MJ, Zhang L, Lionberger R. Generating Model Integrated Evidence for Generic Drug Development and Assessment. Clin Pharmacol Ther. 2019;105(2):338–49. https://doi.org/10.1002/cpt.1282.

Article  PubMed  Google Scholar 

Zhang F, Zhou Y, Wu N, Jia R, Liu A, Liu B, et al. In silico prediction of bioequivalence of Isosorbide Mononitrate tablets with different dissolution profiles using PBPK modeling and simulation. Eur J Pharm Sci. 2021;157: 105618. https://doi.org/10.1016/j.ejps.2020.105618.

Article  CAS  PubMed  Google Scholar 

Kato T, Nakagawa H, Mikkaichi T, Miyano T, Matsumoto Y, Ando S. Establishment of a clinically relevant specification for dissolution testing using physiologically based pharmacokinetic (PBPK) modeling approaches. Eur J Pharm Biopharm. 2020;151:45–52. https://doi.org/10.1016/j.ejpb.2020.03.012.

Article  CAS  PubMed  Google Scholar 

Loisios-Konstantinidis I, Cristofoletti R, Fotaki N, Turner DB, Dressman J. Establishing virtual bioequivalence and clinically relevant specifications using in vitro biorelevant dissolution testing and physiologically-based population pharmacokinetic modeling. case example: Naproxen. Eur J Pharm Sci. 2020;143:105170. https://doi.org/10.1016/j.ejps.2019.105170.

Article  CAS  PubMed  Google Scholar 

Pepin XJ, Flanagan TR, Holt DJ, Eidelman A, Treacy D, Rowlings CE. Justification of Drug Product Dissolution Rate and Drug Substance Particle Size Specifications Based on Absorption PBPK Modeling for Lesinurad Immediate Release Tablets. Mol Pharm. 2016;13(9):3256–69. https://doi.org/10.1021/acs.molpharmaceut.6b00497.

Article  CAS  PubMed  Google Scholar 

Qi F, Zhu L, Li N, Ge T, Xu G, Liao S. Influence of different proton pump inhibitors on the pharmacokinetics of voriconazole. Int J Antimicrob Agents. 2017;49(4):403–9. https://doi.org/10.1016/j.ijantimicag.2016.11.025.

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhang H, Meng L, Wang M, Yuan H, Ou N, et al. Influence of CYP2C19 on the relationship between pharmacokinetics and intragastric pH of omeprazole administered by successive intravenous infusions in Chinese healthy volunteers. Eur J Clin Pharmacol. 2010;66(6):563–9. https://doi.org/10.1007/s00228-010-0821-6.

Article  CAS  PubMed  Google Scholar 

Statelova M, Holm R, Fotaki N, Reppas C, Vertzoni M. Usefulness of the Beagle Model in the Evaluation of Paracetamol and Ibuprofen Exposure after Oral Administration to Pediatric Populations: An Exploratory Study. Mol Pharm. 2023;20(6):2836–52. https://doi.org/10.1021/acs.molpharmaceut.2c00926.

Article  CAS  PubMed  Google Scholar 

Sun L, Wang C, Zhang Y. A physiologically based pharmacokinetic model for valacyclovir established based on absolute expression quantity of hPEPT1 and its application. Eur J Pharm Sci. 2018;123:560–8. https://doi.org/10.1016/j.ejps.2018.07.057.

Article  CAS  PubMed  Google Scholar 

Dutta S, Qiu Y, Samara E, Cao G, Granneman GR. Once-a-day extended-release dosage form of divalproex sodium III: development and validation of a Level A in vitro-in vivo correlation (IVIVC). J Pharm Sci. 2005;94(9):1949–56. https://doi.org/10.1002/jps.20387.

Article  CAS  PubMed  Google Scholar 

Zhang X, Wen H, Fan J, Vince B, Li T, Gao W, et al. Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence. CPT Pharmacometrics Syst Pharmacol. 2017;6(8):523–31. https://doi.org/10.1002/psp4.12198.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barter ZE, Tucker GT, Rowland-Yeo K. Differences in cytochrome p450-mediated pharmacokinetics between chinese and caucasian populations predicted by mechanistic physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2013;52(12):1085–100. https://doi.org/10.1007/s40262-013-0089-y.

Article  CAS  PubMed  Google Scholar 

Chun G, Minhui C, Zhonghong L. Quality Consistency Evaluation of Omeprazole Enteric-coated Capsules. China Pharmacist. 2016;19(10):1990–3.

Google Scholar 

Feng S, Cleary Y, Parrott N, Hu P, Weber C, Wang Y, et al. Evaluating a physiologically based pharmacokinetic model for prediction of omeprazole clearance and assessing ethnic sensitivity in CYP2C19 metabolic pathway. Eur J Clin Pharmacol. 2015;71(5):617–24. https://doi.org/10.1007/s00228-015-1834-y.

Article  CAS  PubMed  Google Scholar 

Zhang H, Xia B, Sheng J, Heimbach T, Lin TH, He H, et al. Application of physiologically based absorption modeling to formulation development of a low solubility, low permeability weak base: mechanistic investigation of food effect. AAPS PharmSciTech. 2014;15(2):400–6. https://doi.org/10.1208/s12249-014-0075-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu AT, Frisella ME, Johnson KC. Dissolution modeling: factors affecting the dissolution rates of polydisperse powders. Pharm Res. 1993;10(9):1308–14. https://doi.org/10.1023/a:1018917729477.

Article  CAS  PubMed  Google Scholar 

Abend A, Heimbach T, Cohen M, Kesisoglou F, Pepin X, Suarez-Sharp S. Dissolution and Translational Modeling Strategies Enabling Patient-Centric Drug Product Development: the M-CERSI Workshop Summary Report. AAPS J. 2018;20(3):60. https://doi.org/10.1208/s12248-018-0213-x.

Article  PubMed  Google Scholar 

McAllister M, Flanagan T, Boon K, Pepin X, Tistaert C, Jamei M, et al. Developing Clinically Relevant Dissolution Specifications for Oral Drug Products-Industrial and Regulatory Perspectives. Pharmaceutics. 2019;12(1). https://doi.org/10.3390/pharmaceutics12010019.

Xie F, Ji S, Cheng Z. In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria, how and when do they match? Using a BCS class II drug as a simulation example. Eur J Pharm Sci. 2015;66:163–72. https://doi.org/10.1016/j.ejps.2014.10.002.

Article  CAS  PubMed  Google Scholar 

Duan JZ, Riviere K, Marroum P. In vivo bioequivalence and in vitro similarity factor (f2) for dissolution profile comparisons of extended release formulations: how and when do they match? Pharm Res. 2011;28(5):1144–56. https://doi.org/10.1007/s11095-011-0377-x.

Article  CAS  PubMed  Google Scholar 

Bhattiprolu AK, Kollipara S, Ahmed T, Boddu R, Chachad S. Utility of Physiologically Based Biopharmaceutics Modeling (PBBM) in Regulatory Perspective: Application to Supersede f2, Enabling Biowaivers & Creation of Dissolution Safe Space. J Pharm Sci. 2022;111(12):3397–410. https://doi.org/10.1016/j.xphs.2022.09.003.

Article  CAS  PubMed  Google Scholar 

Abend AM, Zhang L, Fredro-Kumbaradzi E, Hoffelder T, Cohen MJ, Anand O, et al. Current Approaches for Dissolution Similarity Assessment, Requirements, and Global Expectations. AAPS J. 2022;24(3):50. https://doi.org/10.1208/s12248-022-00691-4.

Article  PubMed  Google Scholar 

McAllister M, Flanagan T, Cole S, Abend A, Kotzagiorgis E, Limberg J, et al. Developing Clinically Relevant Dissolution Specifications (CRDSs) for Oral Drug Products: Virtual Webinar Series. Pharmaceutics. 2022;14(5). https://doi.org/10.3390/pharmaceutics14051010.

Laisney M, Heimbach T, Mueller-Zsigmondy M, Blumenstein L, Costa R, Ji Y. Physiologically Based Biopharmaceutics Modeling to Demonstrate Virtual Bioequivalence and Bioequivalence Safe-space for Ribociclib which has Permeation Rate-controlled Absorption. J Pharm Sci. 2022;111(1):274–84. https://doi.org/10.1016/j.xphs.2021.10.017.

Article  CAS  PubMed 

Comments (0)

No login
gif