Penetration of Antibiotics into Subcutaneous and Intramuscular Interstitial Fluid: A Meta-Analysis of Microdialysis Studies in Adults

DeRyke CA, Lee SY, Kuti JL, Nicolau DP. Optimising dosing strategies of antibacterials utilising pharmacodynamic principles. Drugs. 2006;66:1–14.

Article  CAS  PubMed  Google Scholar 

Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am. 2009;23:791–vii.

Article  PubMed  PubMed Central  Google Scholar 

Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58:1072–83.

Article  CAS  PubMed  Google Scholar 

Jager NGL, van Hest RM, Lipman J, Roberts JA, Cotta MO. Antibiotic exposure at the site of infection: principles and assessment of tissue penetration. Expert Rev Clin Pharmacol. 2019;12:623–34.

Article  CAS  PubMed  Google Scholar 

Liu P, Müller M, Derendorf H. Rational dosing of antibiotics: the use of plasma concentrations versus tissue concentrations. Int J Antimicrob Agents. 2002;19:285–90.

Article  CAS  PubMed  Google Scholar 

Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB. What antibiotic exposures are required to suppress the emergence of resistance for Gram-negative bacteria? A systematic review. Clin Pharmacokinet. 2019;58:1407–43.

Article  PubMed  Google Scholar 

Dahyot C, Marchand S, Bodin M, Debeane B, Mimoz O, Couet W. Application of basic pharmacokinetic concepts to analysis of microdialysis Data. Clin Pharmacokinet. 2008;47:181–9.

Article  CAS  PubMed  Google Scholar 

Müller M, Peña A dela, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-ianfective agents: distribution in tissue. Antimicrob Agents Chemother. 2004;48:1441.

Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/Blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23:858–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barza M, Cuchural G. General principles of antibiotic tissue penetration. J Antimicrob Chemother. 1985;15:59–75.

Article  CAS  PubMed  Google Scholar 

Herring N, Paterson DJ. Levick’s introduction to cardiovascular physiology. Sixth edition. Chapman and Hall/CRC, Boca Raton. 2018.

Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol. 2013;2: e63.

Article  PubMed  PubMed Central  Google Scholar 

Mouton JW, Theuretzbacher U, Craig WA, Tulkens PM, Derendorf H, Cars O. Tissue concentrations: do we ever learn? J Antimicrob Chemother. 2008;61:235–7.

Article  CAS  PubMed  Google Scholar 

Nix DE, Goodwin SD, Peloquin CA, Rotella DL, Schentag JJ. Antibiotic tissue penetration and its relevance: impact of tissue penetration on infection response. Antimicrob Agents Chemother. 1991;35:1953–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammarlund-Udenaes M. Microdialysis as an important technique in systems pharmacology: a historical and methodological review. AAPS J. 2017;19:1294–303.

Article  CAS  PubMed  Google Scholar 

Müller M, Schmid R, Georgopoulos A, Buxbaum A, Wasicek C, Eichler H-G. Application of microdialysis to clinical pharmacokinetics in humans. Clin Pharmacol Ther. 1995;57:371–80.

Article  PubMed  Google Scholar 

Chaurasia CS, Müller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, et al. AAPS-FDA Workshop White Paper: microdialysis principles, application and regulatory perspectives. Pharm Res. 2007;24:1014–25.

Article  CAS  PubMed  Google Scholar 

Kho CM, Enche Ab Rahim SK, Ahmad ZA, Abdullah NS. A review on microdialysis calibration methods: the theory and current related efforts. Mol Neurobiol. 2017;54:3506–27.

Kiang TKL, Häfeli UO, Ensom MHH. A comprehensive review on the pharmacokinetics of antibiotics in interstitial fluid spaces in humans: implications on dosing and clinical pharmacokinetic monitoring. Clin Pharmacokinet. 2014;53:695–730.

Article  CAS  PubMed  Google Scholar 

Traunmüller F, Zeitlinger M, Zeleny P, Müller M, Joukhadar C. Pharmacokinetics of single- and multiple-dose oral clarithromycin in soft tissues determined by microdialysis. Antimicrob Agents Chemother. 2007;51:3185–9.

Article  PubMed  PubMed Central  Google Scholar 

Gattringer R, Urbauer E, Traunmüller F, Zeitlinger M, Dehghanyar P, Zeleny P, et al. Pharmacokinetics of telithromycin in plasma and soft tissues after single-dose administration to healthy volunteers. Antimicrob Agents Chemother. 2004;48:4650–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toma O, Suntrup P, Stefanescu A, London A, Mutch M, Kharasch E. Pharmacokinetics and tissue penetration of cefoxitin in obesity: implications for risk of surgical site infection. Anesth Analg. 2011;113:730–7.

Article  CAS  PubMed  Google Scholar 

Busse D, Simon P, Schmitt L, Petroff D, Dorn C, Dietrich A, et al. Comparative plasma and interstitial tissue fluid pharmacokinetics of meropenem demonstrate the need for increasing dose and infusion duration in obese and non-obese patients. Clin Pharmacokinet. 2022;61:655–72.

Article  CAS  PubMed  Google Scholar 

Lombardo F, Berellini G, Obach RS. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 1352 drug compounds. Drug Metab Dispos. 2018;46:1466–77.

Article  CAS  PubMed  Google Scholar 

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–82.

Friedrich JO, Adhikari NK, Beyene J. The ratio of means method as an alternative to mean differences for analyzing continuous outcome variables in meta-analysis: a simulation study. BMC Med Res Methodol. 2008;8:32.

Article  PubMed  PubMed Central  Google Scholar 

Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

Article  PubMed  PubMed Central  Google Scholar 

Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 2005;30:261–93.

Article  Google Scholar 

Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003;22:2693–710.

Article  PubMed  Google Scholar 

Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

Article  CAS  PubMed  Google Scholar 

Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22:153–60.

Article  PubMed  PubMed Central  Google Scholar 

Harrer M, Cuijpers P, Furukawa T, Ebert DD. dmetar: Companion R package for the Guide ‘Doing Meta-Analysis in R’ [Internet]. 2019. Available from: http://dmetar.protectlab.org/. [Accessed 17 Jun 2024].

Al Jalali V, Wölfl-Duchek M, Taubert M, Matzneller P, Lackner E, Dorn C, et al. Plasma and soft tissue pharmacokinetics of ceftolozane/tazobactam in healthy volunteers after single and multiple intravenous infusion: a microdialysis study. J Antimicrob Chemother. 2021;76:2342–51.

Article  CAS  PubMed  Google Scholar 

Barbour A, Schmidt S, Rout WR, Ben-David K, Burkhardt O, Derendorf H. Soft tissue penetration of cefuroxime determined by clinical microdialysis in morbidly obese patients undergoing abdominal surgery. Int J Antimicrob Agents. 2009;34:231–5.

Article  CAS  PubMed  Google Scholar 

Bellmann R, Kuchling G, Dehghanyar P, Zeitlinger M, Minar E, Mayer BX, et al. Tissue pharmacokinetics of levofloxacin in human soft tissue infections. Br J Clin Pharmacol. 2004;57:563–8.

Comments (0)

No login
gif