Machine Learning Approach in Dosage Individualization of Isoniazid for Tuberculosis

Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Primers. 2016. https://doi.org/10.1038/nrdp.2016.76.

Article  PubMed  Google Scholar 

Bagcchi S. WHO’s global tuberculosis report 2022. Lancet Microbe. 2023;4(1): e20.

Article  PubMed  Google Scholar 

Soedarsono S, Jayanti RP, Mertaniasih NM, Kusmiati T, Permatasari A, Indrawanto DW, et al. Development of population pharmacokinetics model of isoniazid in Indonesian patients with tuberculosis. Int J Infect Dis. 2022;117:8–14.

Article  CAS  PubMed  Google Scholar 

Rogers Z, Hiruy H, Pasipanodya JG, Mbowane C, Adamson J, Ngotho L, et al. The non-linear child: ontogeny, isoniazid concentration, and NAT2 genotype modulate enzyme reaction kinetics and metabolism. EBioMedicine. 2016;11:118–26.

Article  PubMed  PubMed Central  Google Scholar 

Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M, et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother. 2005;49(5):1733–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen B, Shi H-Q, Feng MR, Wang X-H, Cao X-M, Cai W-M. Population pharmacokinetics and pharmacodynamics of isoniazid and its metabolite acetylisoniazid in Chinese population. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.932686.

Article  PubMed  PubMed Central  Google Scholar 

Pasipanodya JG, Gumbo T. A new evolutionary and pharmacokinetic–pharmacodynamic scenario for rapid emergence of resistance to single and multiple anti-tuberculosis drugs. Curr Opin Pharmacol. 2011;11(5):457–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekker A, Schaaf HS, Draper HR, van der Laan L, Murray S, Wiesner L, et al. Pharmacokinetics of rifampin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised WHO-recommended treatment guidelines. Antimicrob Agents Chemother. 2016;60(4):2171–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–54.

Article  CAS  PubMed  Google Scholar 

Anderson G, Vinnard C. Diagnostic accuracy of therapeutic drug monitoring during tuberculosis treatment. J Clin Pharmacol. 2022;62(10):1206–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.

Article  CAS  PubMed  Google Scholar 

Prahl JB, Johansen IS, Cohen AS, Frimodt-Møller N, Andersen ÅB. Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs: a prospective observational study--authors' response. J Antimicrob Chemother. 2015;70(1):321–2.

Eckardt JN, Wendt K, Bornhäuser M, Middeke JM. Reinforcement learning for precision oncology. Cancers. 2021;13(18):4624.

Article  PubMed  PubMed Central  Google Scholar 

Bräm DS, Nahum U, Schropp J, Pfister M, Koch G. Low-dimensional neural ODEs and their application in pharmacokinetics. J Pharmacokinet Pharmacodyn. 2024;51(2):123–40.

Article  PubMed  Google Scholar 

Bräm DS, Koch G, Allegaert K, van den Anker J, Pfister M. Applying neural ODEs to derive a mechanism-based model for characterizing maturation-related serum creatinine dynamics in preterm newborns. J Clin Pharmacol. 2024. https://doi.org/10.1002/jcph.2460.

Article  PubMed  Google Scholar 

Lu J, Deng KW, Zhang XY, Liu GB, Guan YF. Neural-ODE for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing regimens. Iscience. 2021;24(7):102804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woillard JB, Labriffe M, Aurélie P, Marquet P. Estimation of drug exposure by machine learning based on simulations from published pharmacokinetic models: the example of tacrolimus. Pharmacol Res. 2021;167:105578.

Article  CAS  PubMed  Google Scholar 

Cho YS, Jang TW, Kim HJ, Oh JY, Lee HK, Park HK, et al. Isoniazid population pharmacokinetics and dose recommendation for Korean patients with tuberculosis based on target attainment analysis. J Clin Pharmacol. 2021;61(12):1567–78.

Article  CAS  PubMed  Google Scholar 

Denti P, Jeremiah K, Chigutsa E, Faurholt-Jepsen D, PrayGod G, Range N, et al. Pharmacokinetics of isoniazid, pyrazinamide, and ethambutol in newly diagnosed pulmonary TB patients in Tanzania. PLoS One. 2015;10(10): e0141002.

Article  PubMed  PubMed Central  Google Scholar 

Gao YZ, Forsman LD, Ren WH, Zheng XB, Bao ZW, Hu Y, et al. Drug exposure of first-line anti-tuberculosis drugs in China: A prospective pharmacological cohort study. Br J Clin Pharmacol. 2021;87(3):1347–58.

Article  CAS  PubMed  Google Scholar 

Naidoo A, Chirehwa M, Ramsuran V, McIlleron H, Naidoo K, Yende-Zuma N, et al. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics. 2019;20(4):225–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben Fredj N, Ben Romdhane H, Woillard JB, Chickaid M, Ben Fadhel N, Chadly Z, et al. Population pharmacokinetic model of isoniazid in patients with tuberculosis in Tunisia. Int J Infect Dis. 2021;104:562–7.

Article  PubMed  Google Scholar 

Ogami C, Tsuji Y, Seki H, Kawano H, To H, Matsumoto Y, et al. An artificial neural network-pharmacokinetic model and its interpretation using Shapley additive explanations. CPT Pharmacometr Syst Pharmacol. 2021;10(7):760–8.

Article  CAS  Google Scholar 

Jing W, Zong ZJ, Tang BH, Wang J, Zhang TT, Wen S, et al. Population pharmacokinetic analysis of isoniazid among pulmonary tuberculosis patients from China. Antimicrob Agents Chemother. 2020;64(3):e01736-19. https://doi.org/10.1128/AAC.01736-19.

Article  PubMed  PubMed Central  Google Scholar 

Donald PR, Parkin DP, Seifart HI, Schaaf HS, van Helden PD, Werely CJ, et al. The influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazid. Eur J Clin Pharmacol. 2007;63(7):633–9.

Article  CAS  PubMed  Google Scholar 

Treatment of Tuberculosis: Guidelines. 4th ed. Geneva: World Health Organization. 2010.

Payam N, Dorman SE, Narges A, Barry PM, Brozek JL, Adithya C, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7): e147.

Article  Google Scholar 

Lin S-Y, Law K-M, Yeh Y-C, Wu K-C, Lai J-H, Lin C-H, et al. Applying machine learning to carotid sonographic features for recurrent stroke in patients with acute stroke. Front Cardiovasc Med. 2022;9: 804410.

Article  PubMed  PubMed Central  Google Scholar 

Mohammadi MR, Hadavimoghaddam F, Pourmahdi M, Atashrouz S, Munir MT, Hemmati-Sarapardeh A, et al. Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-97131-8.

Article  PubMed  PubMed Central  Google Scholar 

Li QY, Tang BH, Wu YE, Yao BF, Zhang W, Zheng Y, et al. Machine learning: a new approach for dose individualization. Clin Pharmacol Ther. 2023;115(4):727–44.

Article  PubMed  Google Scholar 

Muscat JE, Pittman B, Kleinman W, Lazarus P, Stellman SD, Richie JP. Comparison of CYP1A2 and NAT2 phenotypes between black and white smokers. Biochem Pharmacol. 2008;76(7):929–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liang HY, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelli

Comments (0)

No login
gif