Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Primers. 2016. https://doi.org/10.1038/nrdp.2016.76.
Bagcchi S. WHO’s global tuberculosis report 2022. Lancet Microbe. 2023;4(1): e20.
Soedarsono S, Jayanti RP, Mertaniasih NM, Kusmiati T, Permatasari A, Indrawanto DW, et al. Development of population pharmacokinetics model of isoniazid in Indonesian patients with tuberculosis. Int J Infect Dis. 2022;117:8–14.
Article CAS PubMed Google Scholar
Rogers Z, Hiruy H, Pasipanodya JG, Mbowane C, Adamson J, Ngotho L, et al. The non-linear child: ontogeny, isoniazid concentration, and NAT2 genotype modulate enzyme reaction kinetics and metabolism. EBioMedicine. 2016;11:118–26.
Article PubMed PubMed Central Google Scholar
Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M, et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother. 2005;49(5):1733–8.
Article CAS PubMed PubMed Central Google Scholar
Chen B, Shi H-Q, Feng MR, Wang X-H, Cao X-M, Cai W-M. Population pharmacokinetics and pharmacodynamics of isoniazid and its metabolite acetylisoniazid in Chinese population. Front Pharmacol. 2022. https://doi.org/10.3389/fphar.2022.932686.
Article PubMed PubMed Central Google Scholar
Pasipanodya JG, Gumbo T. A new evolutionary and pharmacokinetic–pharmacodynamic scenario for rapid emergence of resistance to single and multiple anti-tuberculosis drugs. Curr Opin Pharmacol. 2011;11(5):457–63.
Article CAS PubMed PubMed Central Google Scholar
Bekker A, Schaaf HS, Draper HR, van der Laan L, Murray S, Wiesner L, et al. Pharmacokinetics of rifampin, isoniazid, pyrazinamide, and ethambutol in infants dosed according to revised WHO-recommended treatment guidelines. Antimicrob Agents Chemother. 2016;60(4):2171–9.
Article CAS PubMed PubMed Central Google Scholar
Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–54.
Article CAS PubMed Google Scholar
Anderson G, Vinnard C. Diagnostic accuracy of therapeutic drug monitoring during tuberculosis treatment. J Clin Pharmacol. 2022;62(10):1206–14.
Article CAS PubMed PubMed Central Google Scholar
Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs. 2002;62(15):2169–83.
Article CAS PubMed Google Scholar
Prahl JB, Johansen IS, Cohen AS, Frimodt-Møller N, Andersen ÅB. Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs: a prospective observational study--authors' response. J Antimicrob Chemother. 2015;70(1):321–2.
Eckardt JN, Wendt K, Bornhäuser M, Middeke JM. Reinforcement learning for precision oncology. Cancers. 2021;13(18):4624.
Article PubMed PubMed Central Google Scholar
Bräm DS, Nahum U, Schropp J, Pfister M, Koch G. Low-dimensional neural ODEs and their application in pharmacokinetics. J Pharmacokinet Pharmacodyn. 2024;51(2):123–40.
Bräm DS, Koch G, Allegaert K, van den Anker J, Pfister M. Applying neural ODEs to derive a mechanism-based model for characterizing maturation-related serum creatinine dynamics in preterm newborns. J Clin Pharmacol. 2024. https://doi.org/10.1002/jcph.2460.
Lu J, Deng KW, Zhang XY, Liu GB, Guan YF. Neural-ODE for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing regimens. Iscience. 2021;24(7):102804.
Article CAS PubMed PubMed Central Google Scholar
Woillard JB, Labriffe M, Aurélie P, Marquet P. Estimation of drug exposure by machine learning based on simulations from published pharmacokinetic models: the example of tacrolimus. Pharmacol Res. 2021;167:105578.
Article CAS PubMed Google Scholar
Cho YS, Jang TW, Kim HJ, Oh JY, Lee HK, Park HK, et al. Isoniazid population pharmacokinetics and dose recommendation for Korean patients with tuberculosis based on target attainment analysis. J Clin Pharmacol. 2021;61(12):1567–78.
Article CAS PubMed Google Scholar
Denti P, Jeremiah K, Chigutsa E, Faurholt-Jepsen D, PrayGod G, Range N, et al. Pharmacokinetics of isoniazid, pyrazinamide, and ethambutol in newly diagnosed pulmonary TB patients in Tanzania. PLoS One. 2015;10(10): e0141002.
Article PubMed PubMed Central Google Scholar
Gao YZ, Forsman LD, Ren WH, Zheng XB, Bao ZW, Hu Y, et al. Drug exposure of first-line anti-tuberculosis drugs in China: A prospective pharmacological cohort study. Br J Clin Pharmacol. 2021;87(3):1347–58.
Article CAS PubMed Google Scholar
Naidoo A, Chirehwa M, Ramsuran V, McIlleron H, Naidoo K, Yende-Zuma N, et al. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics. 2019;20(4):225–40.
Article CAS PubMed PubMed Central Google Scholar
Ben Fredj N, Ben Romdhane H, Woillard JB, Chickaid M, Ben Fadhel N, Chadly Z, et al. Population pharmacokinetic model of isoniazid in patients with tuberculosis in Tunisia. Int J Infect Dis. 2021;104:562–7.
Ogami C, Tsuji Y, Seki H, Kawano H, To H, Matsumoto Y, et al. An artificial neural network-pharmacokinetic model and its interpretation using Shapley additive explanations. CPT Pharmacometr Syst Pharmacol. 2021;10(7):760–8.
Jing W, Zong ZJ, Tang BH, Wang J, Zhang TT, Wen S, et al. Population pharmacokinetic analysis of isoniazid among pulmonary tuberculosis patients from China. Antimicrob Agents Chemother. 2020;64(3):e01736-19. https://doi.org/10.1128/AAC.01736-19.
Article PubMed PubMed Central Google Scholar
Donald PR, Parkin DP, Seifart HI, Schaaf HS, van Helden PD, Werely CJ, et al. The influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazid. Eur J Clin Pharmacol. 2007;63(7):633–9.
Article CAS PubMed Google Scholar
Treatment of Tuberculosis: Guidelines. 4th ed. Geneva: World Health Organization. 2010.
Payam N, Dorman SE, Narges A, Barry PM, Brozek JL, Adithya C, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7): e147.
Lin S-Y, Law K-M, Yeh Y-C, Wu K-C, Lai J-H, Lin C-H, et al. Applying machine learning to carotid sonographic features for recurrent stroke in patients with acute stroke. Front Cardiovasc Med. 2022;9: 804410.
Article PubMed PubMed Central Google Scholar
Mohammadi MR, Hadavimoghaddam F, Pourmahdi M, Atashrouz S, Munir MT, Hemmati-Sarapardeh A, et al. Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-97131-8.
Article PubMed PubMed Central Google Scholar
Li QY, Tang BH, Wu YE, Yao BF, Zhang W, Zheng Y, et al. Machine learning: a new approach for dose individualization. Clin Pharmacol Ther. 2023;115(4):727–44.
Muscat JE, Pittman B, Kleinman W, Lazarus P, Stellman SD, Richie JP. Comparison of CYP1A2 and NAT2 phenotypes between black and white smokers. Biochem Pharmacol. 2008;76(7):929–37.
Article CAS PubMed PubMed Central Google Scholar
Liang HY, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelli
Comments (0)