Wang ZM, Messi ML, Rodrigues ACZ, Delbono O (2022) Skeletal muscle sympathetic denervation disrupts the neuromuscular junction postterminal organization: a single-cell quantitative approach. Mol Cell Neurosci 120:103730
Article CAS PubMed PubMed Central Google Scholar
Dmitrieva SA, Vologin SG, Tsentsevitsky AN, Arkhipov AY, Khuzakhmetova VF, Sibgatullina GV, Bukharaeva EA (2023) Sympathetic innervation and endogenous catecholamines in neuromuscular preparations of muscles with different functional profiles. Biochem (Mosc) 88:364–373
Delbono O, Rodrigues ACZ, Bonilla HJ, Messi ML (2021) The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing Res Rev 67:101305
Article CAS PubMed PubMed Central Google Scholar
Khan MM, Lustrino D, Silveira WA, Wild F, Straka T, Issop Y, O’Connor E, Cox D, Reischl M, Marquardt T, Labeit D, Labeit S, Benoit E, Molgo J, Lochmuller H, Witzemann V, Kettelhut IC, Navegantes LC, Pozzan T, Rudolf R (2016) Sympathetic innervation controls homeostasis of neuromuscular junctions in health and Disease. Proc Natl Acad Sci U S A 113:746–750
Article CAS PubMed PubMed Central Google Scholar
Petrov AM, Zakirjanova GF, Kovyazina IV, Tsentsevitsky AN, Bukharaeva EA (2022) Adrenergic receptors control frequency-dependent switching of the exocytosis mode between full-collapse and kiss-and-run in murine motor nerve terminal. Life Sci 296:120433
Article CAS PubMed Google Scholar
Straka T, Vita V, Prokshi K, Horner SJ, Khan MM, Pirazzini M, Williams MPI, Hafner M, Zaglia T, Rudolf R (2018) Postnatal Development and Distribution of Sympathetic Innervation in mouse skeletal muscle. Int J Mol Sci 19
Bukharaeva E, Khuzakhmetova V, Dmitrieva S, Tsentsevitsky A (2021) Adrenoceptors modulate cholinergic synaptic transmission at the Neuromuscular Junction. Int J Mol Sci 22
Wang ZM, Messi ML, Grinevich V, Budygin E, Delbono O (2020) Postganglionic sympathetic neurons, but not locus coeruleus optostimulation, activates neuromuscular transmission in the adult mouse in vivo. Mol Cell Neurosci 109:103563
Article CAS PubMed PubMed Central Google Scholar
Tsentsevitsky A, Nurullin L, Tyapkina O, Bukharaeva E (2020) Sympathomimetics regulate quantal acetylcholine release at neuromuscular junctions through various types of adrenoreceptors. Mol Cell Neurosci 108:103550
Article CAS PubMed Google Scholar
Wang ZM, Rodrigues ACZ, Messi ML, Delbono O (2020) Aging blunts sympathetic Neuron Regulation of motoneurons synaptic vesicle release mediated by beta1- and alpha2B-Adrenergic receptors in geriatric mice. J Gerontol A Biol Sci Med Sci 75:1473–1480
Article CAS PubMed PubMed Central Google Scholar
Clausen L, Cossins J, Beeson D (2018) Beta-2 adrenergic receptor agonists enhance AChR Clustering in C2C12 myotubes: implications for Therapy of Myasthenic disorders. J Neuromuscul Dis 5:231–240
Article PubMed PubMed Central Google Scholar
Li S, Sun B, Nilsson MI, Bird A, Tarnopolsky MA, Thurberg BL, Bali D, Koeberl DD (2013) Adjunctive beta2-agonists reverse neuromuscular involvement in murine pompe Disease. FASEB J 27:34–44
Article PubMed PubMed Central Google Scholar
Ghazanfari N, Morsch M, Tse N, Reddel SW, Phillips WD (2014) Effects of the ss2-adrenoceptor agonist, albuterol, in a mouse model of anti-MuSK myasthenia gravis. PLoS ONE 9:e87840
Article PubMed PubMed Central Google Scholar
Bartus RT, Betourne A, Basile A, Peterson BL, Glass J, Boulis NM (2016) beta2-Adrenoceptor agonists as novel, safe and potentially effective therapies for Amyotrophic Lateral Sclerosis (ALS). Neurobiol Dis 85:11–24
Article CAS PubMed Google Scholar
McMacken GM, Spendiff S, Whittaker RG, O’Connor E, Howarth RM, Boczonadi V, Horvath R, Slater CR, Lochmuller H (2019) Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome. Hum Mol Genet 28:2339–2351
Article CAS PubMed PubMed Central Google Scholar
Rodriguez Cruz PM, Cossins J, Cheung J, Maxwell S, Jayawant S, Herbst R, Waithe D, Kornev AP, Palace J, Beeson D (2020) Congenital myasthenic syndrome due to mutations in MUSK suggests that the level of MuSK phosphorylation is crucial for governing synaptic structure. Hum Mutat 41:619–631
Article CAS PubMed Google Scholar
Breuer T, Bleilevens C, Rossaint R, Marx G, Gehrenkemper J, Dierksen H, Delpierre A, Weis J, Gayan-Ramirez G, Bruells CS (2018) Dexmedetomidine impairs diaphragm function and increases oxidative stress but does not aggravate diaphragmatic atrophy in mechanically ventilated rats. Anesthesiology 128:784–795
Article CAS PubMed Google Scholar
Cheng W, Wu Z, Zhang J, Ren W (2023) Effect of dexmedetomidine on tourniquet-induced skeletal muscle injury. Rev Assoc Med Bras (1992) 69:228–232
Liu M, Liu Y, Li X, Pei M, Han M, Qi F (2022) Dexmedetomidine inhibits abnormal muscle hypertrophy of myofascial trigger points via TNF-alpha/ NF-kappaB signaling pathway in rats. Front Pharmacol 13:1031804
Article CAS PubMed PubMed Central Google Scholar
Haouzi P, Tubbs N (2022) Effects of fentanyl overdose-induced muscle rigidity and dexmedetomidine on respiratory mechanics and pulmonary gas exchange in sedated rats. J Appl Physiol (1985) 132:1407–1422
Article CAS PubMed Google Scholar
Kundra TS, Thimmarayappa A, Dhananjaya M, Manjunatha N (2018) Dexmedetomidine for prevention of skeletal muscle ischaemia-reperfusion injury in patients with chronic limb ischaemia undergoing aortobifemoral bypass Surgery: a prospective double-blind randomized controlled study. Ann Card Anaesth 21:22–25
PubMed PubMed Central Google Scholar
Cheng M, Gao T, Xi F, Cao C, Chen Y, Zhao C, Li Q, Yu W (2017) Dexmedetomidine ameliorates muscle wasting and attenuates the alteration of hypothalamic neuropeptides and inflammation in endotoxemic rats. PLoS ONE 12:e0174894
Article PubMed PubMed Central Google Scholar
Li SP, Zhou XL, Zhao Y (2020) Sedation with midazolam worsens the diaphragm function than dexmedetomidine and propofol during mechanical ventilation in rats. Biomed Pharmacother 121:109405
Article CAS PubMed Google Scholar
Weinger MB, Partridge BL, Henry AF (1995) Dexmedetomidine does not modify the neuromuscular blocking action of vecuronium in the anaesthetized rat. Br J Anaesth 74:455–457
Article CAS PubMed Google Scholar
Sugita S, Fleming LL, Wood C, Vaughan SK, Gomes MP, Camargo W, Naves LA, Prado VF, Prado MA, Guatimosim C, Valdez G (2016) VAChT overexpression increases acetylcholine at the synaptic cleft and accelerates aging of neuromuscular junctions. Skelet Muscle 6:31
Article PubMed PubMed Central Google Scholar
Zakyrjanova GF, Giniatullin AR, Mukhutdinova KA, Kuznetsova EA, Petrov AM (2021) Early differences in membrane properties at the neuromuscular junctions of ALS model mice: effects of 25-hydroxycholesterol. Life Sci 273:119300
Article CAS PubMed Google Scholar
Nervo A, Calas AG, Nachon F, Krejci E (2019) Respiratory Failure triggered by cholinesterase inhibitors may involve activation of a reflex sensory pathway by acetylcholine spillover. Toxicology 424:152232
Article CAS PubMed Google Scholar
Cisterna BA, Vargas AA, Puebla C, Fernandez P, Escamilla R, Lagos CF, Matus MF, Vilos C, Cea LA, Barnafi E, Gaete H, Escobar DF, Cardozo CP, Saez JC (2020) Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation. Nat Commun 11:1073
Article CAS PubMed PubMed Central Google Scholar
Kavalali ET (2020) Neuronal ca(2+) signalling at rest and during spontaneous neurotransmission. J Physiol 598:1649–1654
Article CAS PubMed Google Scholar
Homan AE, Meriney SD (2018) Active zone structure-function relationships at the neuromuscular junction. Synapse 72:e22057
Tsentsevitsky AN, Gafurova CR, Mukhutdinova KA, Giniatullin AR, Fedorov NS, Malomouzh AI, Petrov AM (2023) Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions. Life Sci 318:121507
Article CAS PubMed Google Scholar
Khuzakhmetova V, Bukharaeva E (2021) Adrenaline facilitates synaptic transmission by Synchronizing Release of Acetylcholine Quanta from Motor nerve endings. Cell Mol Neurobiol 41:395–401
Del Castillo J, Katz B (1954) The effect of magnesium on the activity of motor nerve endings. J Physiol 124:553–559
Article PubMed PubMed Central Google Scholar
Bukcharaeva EA, Kim KC, Moravec J, Nikolsky EE, Vyskocil F (1999) Noradrenaline synchronizes evoked quantal release at frog neuromuscular junctions. J Physiol 517(Pt 3):879–888
Article CAS PubMed PubMed Central Google Scholar
Tsentsevitsky AN, Petrov AM (2022) L-type ca(2+) channels at Low External Calcium differentially regulate neurotransmitter release in proximal-distal compartments of the Frog Neuromuscular Junction. Cell Mol Neurobiol 42:2833–2847
Article CAS PubMed Google Scholar
Mikami M, Zhang Y, Kim B, Worgall TS, Groeben H, Emala CW (2017) Dexmedetomidine’s inhibitory effects on acetylcholine release from cholinergic nerves in guinea pig trachea: a mechanism that accounts for its clinical benefit during airway irritation. BMC Anesthesiol 17:52
Comments (0)