Nanomedicine-Based Treatments for Rare and Aggressive Ocular Cancers: Advances in Drug Delivery

Liu LC, Chen YH, Lu DW. Overview of recent advances in Nano-Based ocular drug delivery. Int J Mol Sci. 2023;24(20):15352. https://doi.org/10.3390/ijms242015352.

Wu Z, Sun W, Wang C. Clinical characteristics, treatment, and outcomes of pembrolizumab-induced uveitis. Invest New Drugs. 2024;42(5):510–7.

PubMed  Google Scholar 

Dave RS, Goostrey TC, Ziolkowska M, Czerny-Holownia S, Hoare T, Sheardown H. Ocular drug delivery to the anterior segment using nanocarriers: A mucoadhesive/mucopenetrative perspective. J Controlled Release: Official J Controlled Release Soc. 2021;336:71–88.

CAS  Google Scholar 

Organization WH. World Report On Vision. 2019.

Xu H, Rokohl AC, Ju X, Guo Y, Hou X, Fan W, et al. Global incidence and trends of ocular cancer: A bibliometric analysis. Adv Ophthalmol Pract Res. 2025;5(1):22–31.

PubMed  Google Scholar 

Nowak MS, Romanowska-Dixon B, Grabska-Liberek I, Żurek M. Incidence and survival of ocular melanoma in National Cancer registry of Poland in 2010–2017. Advances in clinical and experimental medicine: official organ. Wroclaw Med Univ. 2022;31(6):615–21.

Google Scholar 

Mahendraraj K, Lau CS, Lee I, Chamberlain RS. Trends in incidence, survival, and management of uveal melanoma: a population-based study of 7,516 patients from the surveillance, epidemiology, and end results database (1973–2012). Clin Ophthalmol (Auckland, NZ). 2016;10:2113–9.

Google Scholar 

Sati A. Eye cancer market Size, share, industry trends, and forecasts (2024–2031). Consegic Business Intelligence; 2024 Oct. Available from: https://www.consegicbusinessintelligence.com/eye-cancer-market.

Huang Y, Guo Y. Quality of life among people with eye cancer: a systematic review from 2012 to 2022. Health Qual Life Outcomes. 2024;22(1):3.

PubMed  PubMed Central  Google Scholar 

Ancona-Lezama D, Dalvin LA, Shields CL. Modern treatment of retinoblastoma: A 2020 review. Indian J Ophthalmol. 2020;68(11):2356–65.

PubMed  PubMed Central  Google Scholar 

Rantala ES, Hernberg M, Kivelä TT. Overall survival after treatment for metastatic uveal melanoma: a systematic review and meta-analysis. Melanoma Res. 2019;29(6):561–8.

PubMed  PubMed Central  Google Scholar 

Wu M, Yavuzyigitoglu S, Brosens E, Ramdas WD, Kiliç E. Worldwide incidence of ocular melanoma and correlation with Pigmentation-Related risk factors. Investig Ophthalmol Vis Sci. 2023;64(13):45.

Google Scholar 

Fu Y, Xiao W, Mao Y. Recent advances and challenges in uveal melanoma immunotherapy. Cancers (Basel). 2022;14(13):3094. https://doi.org10.3390/cancers14133094.

Echegaray JJ, Bechrakis NE, Singh N, Bellerive C, Singh AD. Iodine-125 brachytherapy for uveal melanoma: A systematic review of radiation dose. Ocular Oncol Pathol. 2017;3(3):193–8.

Google Scholar 

Shields CL, Shields JA. Enucleation for uveal melanoma. In: Albert DM, Miller JW, Azar DT, Young LH, editors. Albert and Jakobiec’s principles and practice of ophthalmology. Cham: Springer International Publishing; 2022. pp. 7717–27.

Sheriff IHN, Karaa EK, Chowdhury T, Scheimberg I, Duncan C, Reddy MA, et al. Systemic adjuvant chemotherapy for advanced malignant ocular Medulloepithelioma. Eye. 2023;37(5):947–52.

PubMed  Google Scholar 

Eteghadi A, Ebrahimi M, Keshel SH. New immunotherapy approaches as the most effective treatment for uveal melanoma. Crit Rev Oncol/Hematol. 2024;194:104260.

PubMed  Google Scholar 

Sen M, Demirci H, Honavar SG. Targeted therapy in ophthalmic oncology: the current status. Asia-Pacific J Ophthalmol (Philadelphia Pa). 2024;13(2):100062.

CAS  Google Scholar 

Singh M, Durairaj P, Yeung J. Uveal melanoma: A review of the literature. Oncol Therapy. 2018;6(1):87–104.

Google Scholar 

Carvajal RD, Sacco JJ, Jager MJ, Eschelman DJ, Olofsson Bagge R, Harbour JW, et al. Advances in the clinical management of uveal melanoma. Nat Reviews Clin Oncol. 2023;20(2):99–115.

Google Scholar 

Nathan P, Hassel JC, Rutkowski P, Baurain JF, Butler MO, Schlaak M, et al. Overall survival benefit with Tebentafusp in metastatic uveal melanoma. N Engl J Med. 2021;385(13):1196–206.

CAS  PubMed  Google Scholar 

Damato BE, Dukes J, Goodall H, Carvajal RD. Tebentafusp: T cell redirection for the treatment of metastatic uveal melanoma. Cancers. 2019;11(7):971. https://doi.org/10.3390/cancers11070971.

Stålhammar G. Delays between uveal melanoma diagnosis and treatment increase the risk of metastatic death. Ophthalmology. 2024;131(9):1094–104.

PubMed  Google Scholar 

Atzpodien J, Terfloth K, Fluck M, Reitz M. Cisplatin, gemcitabine and Treosulfan is effective in chemotherapy-pretreated relapsed stage IV uveal melanoma patients. Cancer Chemother Pharmacol. 2008;62(4):685–8.

CAS  PubMed  Google Scholar 

Pons F, Plana M, Caminal JM, Pera J, Fernandes I, Perez J, et al. Metastatic uveal melanoma: is there a role for conventional chemotherapy? - A single center study based on 58 patients. Melanoma Res. 2011;21(3):217–22.

PubMed  Google Scholar 

Kalirai H, Damato BE, Coupland SE. Uveal melanoma cell lines contain stem-like cells that self-renew, produce differentiated progeny, and survive chemotherapy. Investig Ophthalmol Vis Sci. 2011;52(11):8458–66.

CAS  Google Scholar 

Kulbay M, Marcotte E, Remtulla R, Lau THA, Paez-Escamilla M, Wu KY, Burnier MN Jr. Uveal Melanoma: Comprehensive review of its pathophysiology, diagnosis, treatment, and future perspectives. Biomedicines. 2024;12(8):1758. https://doi.org/10.3390/biomedicines12081758.

Wu KY, Wang XC, Anderson M, Tran SD. Advancements in nanosystems for ocular drug delivery: A focus on pediatric retinoblastoma. Molecules. 2024;29(10):2263. https://doi.org/10.3390/molecules29102263.

You S, Luo J, Grossniklaus HE, Gou ML, Meng K, Zhang Q. Nanomedicine in the application of uveal melanoma. Int J Ophthalmol. 2016;9(8):1215–25.

PubMed  PubMed Central  Google Scholar 

Dong Q, Jiang Z. Platinum–Iron Nanoparticles for Oxygen-Enhanced Sonodynamic Tumor Cell Suppression. Inorganics. 2024;12(12):331.

CAS  Google Scholar 

Wang Y, Xu Y, Song J, Liu X, Liu S, Yang N, et al. Tumor Cell-Targeting and Tumor Microenvironment-Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer. Int J Nanomedicine. 2024;13(19):5837–58.

Google Scholar 

Wang B, Hu S, Zhou J, Zhou L, Xhwn ZY, Sun J, Guo XW, Wang HR, et al. Remineralization and bacterial inhibition of early enamel caries surfaces by carboxymethyl chitosan lysozyme nanogels loaded with antibacterial drugs. J Dent. 2025;152:105489.

PubMed  Google Scholar 

Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S et al. Emerging Nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials. 2021;11(1):173

CAS  PubMed  PubMed Central  Google Scholar 

Tavakoli S, Peynshaert K, Lajunen T, Devoldere J, Del Amo EM, Ruponen M, et al. Ocular barriers to retinal delivery of intravitreal liposomes: impact of vitreoretinal interface. J Controlled Release: Official J Controlled Release Soc. 2020;328:952–61.

CAS  Google Scholar 

Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.

CAS  PubMed  Google Scholar 

Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnol. 2023;21(1):232.

Google Scholar 

American Psychiatric Association. Anxiety disorders: DSM-5® selections. 1st ed. Arlington, VA: American Psychiatric Publishing; 2015.

Reimondez-Troitiño S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharmaceutics: Official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2015;95(Pt B):279–93.

Google Scholar 

Zeng H, Li J, Hou K, Wu Y, Chen H, Ning Z. Melanoma and Nanotechnology-Based treatment. Front Oncol. 2022;12:858185.

PubMed  PubMed Central  Google Scholar 

Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. https://doi.org/10.3390/molecules25163731.

Ko MJ, Min S, Hong H, Yoo W, Joo J, Zhang YS, et al. Magnetic NPs for ferroptosis cancer therapy with diagnostic imaging. Bioactive Mater. 2024;32:66–97.

CAS  Google Scholar 

Sun L, Qi J, Ding L, Wang Z, Ji G, Zhang P. Ultrasound-triggered nano delivery of lenvatinib for selective immunotherapy treatment against hepatocellular carcinoma. Sci Rep. 2024;14(1):27395.

CAS  PubMed  PubMed Central  Google Scholar 

García-Díaz M, Foged C, Nielsen HM. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) NPs upon self-assembly with lipids. Int J Pharm. 2015;482(1–2):84–91.

PubMed  Google Scholar 

Mitra AK, Kwatra D, Vadlapudi AD. Drug Delivery (book). Jones & Bartlett Publishers; 2014.

Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Ren Physiol. 2005;288(4):F605–13.

CAS  Google Scholar 

Nakamura H, Fang J, Maeda H. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin Drug Deliv. 2015;12(1):53–64.

CAS  PubMed  Google Scholar 

González-Fernández FM, Bianchera A, Gasco P, Nicoli S, Pescina S. Lipid-based nanocarriers for ophthalmic administration: Towards experimental design implementation. Pharmaceutics. 2021;13(4):447. https://doi.org/10.3390/pharmaceutics13040447.

Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid NPs (SLN, NLC): overcoming the anatomical and physiological barriers of the eye - Part I - Barriers and determining factors in ocular delivery. Eur J Pharm Biopharmaceutics: Official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2017;110:70–5.

Google Scholar 

Grillone A, Riva ER, Mondini A, Forte C, Calucci L, Innocenti C, et al. Active targeting of Sorafenib: preparation, characterization, and in vitro testing of Drug-Loaded magnetic solid lipid NPs. Adv Healthc Mater. 2015;4(11):1681–90.

CAS  PubMed  Google Scholar 

Tabatabaei SN, Derbali RM, Yang C, Superstein R, Hamel P, Chain JL, et al. Co-delivery of miR-181a and Melphalan by lipid NPs for treatment of seeded retinoblastoma. J Controlled Release. 2019;298:177–85.

CAS  Google Scholar 

Ahmad I, Pandit J, Sultana Y, Mishra AK, Hazari PP, Aqil M. Optimization by design of etoposide loaded solid lipid NPs for ocular delivery: Characterization, pharmacokinetic and deposition study. Mater Sci Eng C Mater Biol Appl. 2019;100:959 – 70.

Onugwu AL, Ugorji OL, Ufondu CA, Ihim SA, Echezona AC, Nwagwu CS, et al. Nanoparticle-based delivery systems as emerging therapy in retinoblastoma: recent advances, challenges and prospects. Nanoscale Adv. 2023;5(18):4628–48.

CAS  PubMed  PubMed Central  Google Scholar 

Bai X, Wang Y, Song Z, Feng Y, Chen Y, Zhang D, Feng L. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int J Mol Sci. 2020;21(7):2480. https://doi.org/10.3390/ijms21072480.

Galatage ST, Hebalkar AS, Dhobale SV, Mali OR, Kumbhar PS, Nikade SV,

Comments (0)

No login
gif